Abstract

The present study involves understanding the fretting wear behavior of Ti-6Al-4V alloy produced by laser powder bed fusion (LPBF) under annealed and anodized conditions. The as-built microstructure consists of martensite (α′), which, on subtransus annealing at 850 °C, produces an α + β lamellar structure. The anodized surface forms flaky-like titanium oxide, enhancing the surface's hardness and morphology. Fretting tests were conducted on annealed and anodized samples using specially customized fretting curved contact on a flat surface to simulate the femoral trunnion junction. The as-built alloy exhibited the lowest coefficient of friction (COF), which increased slightly after heat treatment. Anodizing the as-built and heat-treated samples reduced the COF by ∼4.5%, resulting in a reduction of the wear coefficient by ∼37%. The drop in COF is reflected in wear loss and its operating mechanisms. Adhesive wear was identified as the predominant wear mechanism, independent of the material conditions. The results indicate that anodizing effectively improves the wear resistance of LPBF Ti-6Al-4V alloy in both as-built and heat-treated conditions, as evidenced by a lower coefficient of friction, reduced wear loss, and a lower wear coefficient. The wear resistance ranking is as follows: (annealed + anodized) > (as-built + anodized) > (as-built) > (annealed). The subtransus annealing at 850 °C of LPBF Ti-6Al-4V alloy followed by anodizing is highly recommended for improved wear properties.

References

1.
Grover
,
T.
,
Pandey
,
A.
,
Kumari
,
S. T.
,
Awasthi
,
A.
,
Singh
,
B.
,
Dixit
,
P.
,
Singhal
,
P.
, and
Saxena
,
K. K.
,
2019
, “
Role of Titanium in Bio Implants and Additive Manufacturing: An Overview
,”
Mater. Today: Proc.
,
26
, pp.
3071
3080
.
2.
Schaaff
,
P.
,
2004
, “
The Role of Fretting Damage in Total Hip Arthroplasty With Modular Design Hip Joints—Evaluation of Retrieval Studies and Experimental Simulation Methods
,”
J. Appl. Biomater. Biomech.
,
2
(
3
), pp.
121
35
.
3.
Oliveira
,
J. P.
,
LaLonde
,
A. D.
, and
Ma
,
J.
,
2020
, “
Processing Parameters in Laser Powder Bed Fusion Metal Additive Manufacturing
,”
Mater. Des.
,
193
, pp.
1
12
.
4.
Joshua
,
R. J. N.
,
Raj
,
S. A.
,
Hameed Sultan
,
M. T.
,
Łukaszewicz
,
A.
,
Józwik
,
J.
,
Oksiuta
,
Z.
,
Dziedzic
,
K.
,
Tofil
,
A.
, and
Shahar
,
F. S.
,
2024
, “
Powder Bed Fusion 3D Printing in Precision Manufacturing for Biomedical Applications: A Comprehensive Review
,”
Materials (Basel)
,
17
(
3
), pp.
1
30
.
5.
Xu
,
W.
,
Lu
,
X.
,
Tian
,
J.
,
Huang
,
C.
,
Chen
,
M.
,
Yan
,
Y.
,
Wang
,
L.
,
Qu
,
X.
, and
Wen
,
C.
,
2020
, “
Microstructure, Wear Resistance, and Corrosion Performance of Ti35Zr28Nb Alloy Fabricated by Powder Metallurgy for Orthopedic Applications
,”
J. Mater. Sci. Technol.
,
41
, pp.
191
198
.
6.
Fu
,
Y.
,
Wei
,
J.
, and
Batchelor
,
A. W.
,
2000
, “
Some Considerations on the Mitigation of Fretting Damage by the Application of Surface-Modification Technologies
,”
J. Mater. Process. Technol.
,
99
(
1
), pp.
231
245
.
7.
Zhu
,
M.-H.
,
Fan
,
X.-Q.
,
Cai
,
Z.
,
Peng
,
J.-F.
, and
Sun
,
Q.
,
2023
, “
Surface Engineering Design on Alleviating Fretting Wear: A Review
,”
Surf. Sci. Technol.
,
1
(
1
), pp.
1
19
.
8.
Kaluđerović
,
M. R.
,
Schreckenbach
,
J. P.
, and
Graf
,
H. L.
,
2016
, “
Titanium Dental Implant Surfaces Obtained by Anodic Spark Deposition—From the Past to the Future
,”
Mater. Sci. Eng. C
,
69
, pp.
1429
1441
.
9.
Alipal
,
J.
,
Lee
,
T. C.
,
Koshy
,
P.
,
Abdullah
,
H. Z.
, and
Idris
,
M. I.
,
2021
, “
Evolution of Anodised Titanium for Implant Applications
,”
Heliyon
,
7
(
7
), p.
e07408
.
10.
Sarraf
,
M.
,
Rezvani Ghomi
,
E.
,
Alipour
,
S.
,
Ramakrishna
,
S.
, and
Liana Sukiman
,
N.
,
2022
, “
A State-of-the-Art Review of the Fabrication and Characteristics of Titanium and Its Alloys for Biomedical Applications
,”
Bio-Des. Manuf.
,
5
(
2
), pp.
371
395
.
11.
Aladjem
,
A.
,
1973
, “
Anodic Oxidation of Titanium and Its Alloys
,”
J. Mater. Sci.
,
8
(
5
), pp.
688
704
.
12.
Delplancke
,
J. L.
, and
Winand
,
R.
,
1988
, “
Galvanostatic Anodization of Titanium-II. Reactions Efficiencies and Electrochemical Behaviour Model
,”
Electrochim. Acta
,
33
(
11
), pp.
1551
1559
.
13.
Shan
,
L.
,
Shan
,
B.
,
Graham
,
D.
, and
Saxena
,
A.
,
2014
, “
Total Hip Replacement: A Systematic Review and Meta-Analysis on Mid-Term Quality of Life
,”
Osteoarthr. Cartil.
,
22
(
3
), pp.
389
406
.
14.
Soleimani
,
M.
,
Babagoli
,
M.
,
Baghdadi
,
S.
,
Mirghaderi
,
P.
,
Fallah
,
Y.
,
Sheikhvatan
,
M.
, and
Shafiei
,
S. H.
,
2023
, “
Return to Work Following Primary Total Hip Arthroplasty: A Systematic Review and Meta-Analysis
,”
J. Orthop. Surg. Res.
,
18
(
1
).
15.
Ryu
,
J. J.
,
Shrestha
,
S.
,
Manogharan
,
G.
, and
Jung
,
J. K.
,
2018
, “
Sliding Contact Wear Damage of EBM Built Ti6Al4V: Influence of Process Induced Anisotropic Microstructure
,”
Metals (Basel)
,
8
(
2
), pp.
1
16
.
16.
Ulrich
,
S. D.
,
Seyler
,
T. M.
,
Bennett
,
D.
,
Delanois
,
R. E.
,
Saleh
,
K. J.
,
Thongtrangan
,
I.
,
Kuskowski
,
M.
, et al
,
2008
, “
Total Hip Arthroplasties: What Are the Reasons for Revision?
,”
Int. Orthop.
,
32
(
5
), pp.
597
604
.
17.
Delaunay
,
C.
,
Hamadouche
,
M.
,
Girard
,
J.
, and
Duhamel
,
A.
,
2013
, “
What Are the Causes for Failures of Primary Hip Arthroplasties in France?
,”
Clin. Orthop. Relat. Res.
,
471
(
12
), pp.
3863
3869
.
18.
Melvin
,
J. S.
,
Karthikeyan
,
T.
,
Cope
,
R.
, and
Fehring
,
T. K.
,
2014
, “
Early Failures in Total Hip Arthroplasty—A Changing Paradigm
,”
J. Arthroplasty
,
29
(
6
), pp.
1285
1288
.
19.
Karachalios
,
T.
,
Komnos
,
G.
, and
Koutalos
,
A.
,
2018
, “
Total Hip Arthroplasty: Survival and Modes of Failure
,”
EFORT Open Rev.
,
3
(
5
), pp.
232
239
.
20.
Royhman
,
D.
,
Patel
,
M.
,
Runa
,
M. J.
,
Wimmer
,
M. A.
,
Jacobs
,
J. J.
,
Hallab
,
N. J.
, and
Mathew
,
M. T.
,
2016
, “
Fretting-Corrosion Behavior in Hip Implant Modular Junctions: The Influence of Friction Energy and PH Variation
,”
J. Mech. Behav. Biomed. Mater.
,
62
, pp.
570
587
.
21.
Hurricks
,
P. L.
,
1970
, “
The Mechanism of Fretting—A Review
,”
Wear
,
15
(
6
), pp.
389
409
.
22.
Bergmann
,
G.
,
Deuretzabacher
,
G.
,
Heller
,
M.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.
23.
Viceconti
,
M.
,
Baleani
,
M.
,
Squarzoni
,
S.
, and
Tonil
,
A.
,
1997
, “
Fretting Wear in a Modular Neck Hip Prosthesis
,”
J. Biomed. Mater. Res.
,
35
(
2
), pp.
207
216
.
24.
Jauch
,
S. Y.
,
Huber
,
G.
,
Hoenig
,
E.
,
Baxmann
,
M.
,
Grupp
,
T. M.
, and
Morlock
,
M. M.
,
2011
, “
Influence of Material Coupling and Assembly Condition on the Magnitude of Micromotion at the Stem-Neck Interface of a Modular Hip Endoprosthesis
,”
J. Biomech.
,
44
(
9
), pp.
1747
1751
.
25.
Baxmann
,
M.
,
Pfaff
,
A. M.
,
Schilling
,
C.
,
Grupp
,
T. M.
, and
Morlock
,
M. M.
,
2017
, “
Biomechanical Evaluation of the Fatigue Performance, the Taper Corrosion and the Metal Ion Release of a Dual Taper Hip Prosthesis Under Physiological Environmental Conditions
,”
Biotribology
,
12
(
July
), pp.
1
7
.
26.
Bitter
,
T.
,
2018
, “
A Finite Element Approach for Wear Prediction at the Taper Junction in Modular Total Hip Arthroplasty
,”
J. Mech. Behav. Biomed. Mater.
,
77
, pp.
616
623
.
27.
Grupp
,
T. M.
,
Weik
,
T.
,
Bloemer
,
W.
, and
Knaebel
,
H. P.
,
2010
, “
Modular Titanium Alloy Neck Adapter Failures in Hip Replacement—Failure Mode Analysis and Influence of Implant Material
,”
BMC Musculoskeletal Disord.
,
11
(
1
), pp.
1
12
.
28.
Fallahnezhad
,
K.
,
Oskouei
,
R. H.
,
Badnava
,
H.
, and
Taylor
,
M.
,
2019
, “
The Influence of Assembly Force on the Material Loss at the Metallic Head-Neck Junction of Hip Implants Subjected to Cyclic Fretting Wear
,”
Metals (Basel)
,
9
(
4
), p.
422
.
29.
Bertolini
,
R.
,
Bruschi
,
S.
,
Bordin
,
A.
,
Ghiotti
,
A.
,
Pezzato
,
L.
, and
Dabalà
,
M.
,
2017
, “
Fretting Corrosion Behavior of Additive Manufactured and Cryogenic-Machined Ti6Al4V for Biomedical Applications
,”
Adv. Eng. Mater.
,
19
(
6
).
30.
Dong
,
H.
,
2010
,
Tribological Properties of Titanium-Based Alloys
, Woodhead Publishing Series in Metals and Surface Engineering,
Woodhead Publishing Limited
,
New York
, pp.
58
80
.
31.
Li
,
Y.
,
Song
,
L.
,
Xie
,
P.
,
Cheng
,
M.
, and
Xiao
,
H.
,
2020
, “
Enhancing Hardness and Wear Performance of Laser Additive Manufactured Ti6Al4V Alloy Through Achieving Ultrafine Microstructure
,”
Materials (Basel)
,
13
(
5
), pp.
15
18
.
32.
Rani
,
S. U.
,
Kesavan
,
D.
, and
Kamaraj
,
M.
,
2023
, “
Evaluation of Influence of Microstructural Features of LPBF Ti-6Al-4V on Mechanical Properties for an Optimal Strength and Ductility
,”
J. Alloys Compd.
,
960
, p.
170575
.
33.
Allal
,
N.
,
Bourahla
,
A.
,
Benharcha
,
F.
,
Abdi
,
A.
,
Bekkar Djeloul Sayah
,
Z.
, and
Trari
,
M.
,
2022
, “
Anodizing Parameters Optimization of Ti–6Al–4V Titanium Alloy Using Response Surface Methodology
,”
J. Indian Chem. Soc.
,
99
(
6
), p.
100470
.
34.
Diamanti
,
M. V.
,
del Curto
,
B.
, and
Pedeferri
,
M.
,
2011
, “
Anodic Oxidation of Titanium: From Technical Aspects to Biomedical Applications
,”
J. Appl. Biomater. Biomech.
,
9
(
1
), pp.
55
69
.
35.
Kim
,
B. H.
,
Jiang
,
J. C.
, and
Aswath
,
P. B.
,
2011
, “
Mechanism of Wear at Extreme Load and Boundary Conditions With Ashless Anti-Wear Additives: Analysis of Wear Surfaces and Wear Debris
,”
Wear
,
270
(
3–4
), pp.
181
194
.
36.
Zheng
,
H. Y.
,
Qian
,
H. X.
, and
Zhou
,
W.
,
2008
, “
Analyses of Surface Coloration on TiO2 Film Irradiated With Excimer Laser
,”
Appl. Surf. Sci.
,
254
(
7
), pp.
2174
2178
.
37.
Wang
,
J.
,
Tang
,
L.
,
Xue
,
Y.
,
Zhao
,
Z.
,
Ye
,
Z.
,
Cao
,
W.
,
Zhu
,
J.
, and
Jiang
,
F.
,
2024
, “
Microstructure and Properties of (Diamond + TiC) Reinforced Ti6Al4V Titanium Matrix Composites Manufactured by Directed Energy Deposition
,”
J. Mater. Res. Technol.
,
28
(
Dec.
), pp.
3110
3120
.
38.
Zhang
,
D. K.
,
Ge
,
S. R.
, and
Qiang
,
Y. H.
,
2003
, “
Research on the Fatigue and Fracture Behavior Due to the Fretting Wear of Steel Wire in Hoisting Rope
,”
Wear
,
255
(
7–12
), pp.
1233
1237
.
39.
Wang
,
H.
,
Kang
,
J.
,
Yue
,
W.
,
Jin
,
G.
,
Li
,
R.
,
Zhou
,
Y.
,
Liang
,
J.
, and
Yang
,
Y.
,
2023
, “
Microstructure and Corrosive Wear Properties of CoCrFeNiMn High-Entropy Alloy Coatings
,”
Materials (Basel)
,
16
(
1
), p.
55
.
40.
Zhu
,
Y.
,
Chen
,
X.
,
Zou
,
J.
, and
Yang
,
H.
,
2016
, “
Sliding Wear of Selective Laser Melting Processed Ti6Al4V Under Boundary Lubrication Conditions
,”
Wear
,
368–369
, pp.
485
495
.
41.
Yue
,
T.
, and
Wahab
,
M. A.
,
2019
, “
A Review on Fretting Wear Mechanisms, Models and Numerical Analyses
,”
Comput. Mater. Contin.
,
59
(
2
), pp.
405
432
.
42.
Qu
,
J.
,
Blau
,
P. J.
,
Watkins
,
T. R.
,
Cavin
,
O. B.
, and
Kulkarni
,
N. S.
,
2005
, “
Friction and Wear of Titanium Alloys Sliding Against Metal, Polymer, and Ceramic Counterfaces
,”
Wear
,
258
(
9
), pp.
1348
1356
.
43.
Sivaprakasam
,
P.
,
Hailu
,
T.
, and
Elias
,
G.
,
2023
, “
Experimental Investigation on Wear Behavior of Titanium Alloy (Grade 23) by Pin on Disc Tribometer
,”
Results Mater.
,
19
(
Febr.
), p.
100422
.
44.
Chapala
,
P.
,
Sunil Kumar
,
P.
,
Joardar
,
J.
,
Bhandari
,
V.
, and
Acharyya
,
S. G.
,
2019
, “
Effect of Alloying Elements on the Microstructure, Coefficient of Friction, In-Vitro Corrosion and Antibacterial Nature of Selected Ti-Nb Alloys
,”
Appl. Surf. Sci.
,
469
(
Mar.
), pp.
617
623
.
45.
Liu
,
C.
, and
Sun
,
J.
,
2018
, “
Effect of Load on Friction and Wear Behaviors of Alumina Matrix Ceramic Guideway Materials
,”
J. Alloys Compd.
,
743
, pp.
268
273
.
46.
Zhu
,
M. H.
, and
Zhou
,
Z. R.
,
2011
, “
On the Mechanisms of Various Fretting Wear Modes
,”
Tribol. Int.
,
44
(
11
), pp.
1378
1388
.
47.
Fouvry
,
S.
,
Kapsa
,
P.
, and
Vincent
,
L.
,
1996
, “
Quantification of Fretting Damage
,”
Wear
,
200
(
1–2
), pp.
186
205
.
48.
Dubourg
,
M. C.
,
Chateauminois
,
A.
, and
Villechaise
,
B.
,
2003
, “
In Situ Analysis and Modeling of Crack Initiation and Propagation Within Model Fretting Contacts Using Polymer Materials
,”
Tribol. Int.
,
36
(
2
), pp.
109
119
.
49.
Vingsbo
,
O.
, and
Söderberg
,
S.
,
1988
, “
On Fretting Maps
,”
Wear
,
126
(
2
), pp.
131
147
.
50.
Ma
,
L.
,
Eom
,
K.
,
Geringer
,
J.
,
Jun
,
T. S.
, and
Kim
,
K.
,
2019
, “
Literature Review on Fretting Wear and Contact Mechanics of Tribological Coatings
,”
Coatings
,
9
(
8
), pp.
1
20
.
51.
Baxmann
,
M.
,
Jauch
,
S. Y.
,
Schilling
,
C.
,
Blömer
,
W.
,
Grupp
,
T. M.
, and
Morlock
,
M. M.
,
2013
, “
The Influence of Contact Conditions and Micromotions on the Fretting Behavior of Modular Titanium Alloy Taper Connections
,”
Med. Eng. Phys.
,
35
(
5
), pp.
676
683
.
52.
Liang
,
X.
,
Du
,
P.
,
Li
,
S.
, and
Zhang
,
C.
,
2022
, “
Tribological Properties of Additive Manufactured Ti6Al4V Against Cemented Carbide Under Dry Sliding Conditions
,”
Tribol. Int.
,
167
(
Dec.
), p.
107358
.
53.
Rymuza
,
Z.
,
1996
, “
Energy Concept of the Coefficient of Friction
,”
Wear
,
199
(
2
), pp.
187
196
.
54.
Fouvry
,
S.
,
Liskiewicz
,
T.
,
Kapsa
,
P.
,
Hannel
,
S.
, and
Sauger
,
E.
,
2003
, “
An Energy Description of Wear Mechanisms and Its Applications to Oscillating Sliding Contacts
,”
Wear
,
255
(
1–6
), pp.
287
298
.
55.
Fouvry
,
S.
,
Duó
,
P.
, and
Perruchaut
,
P.
,
2004
, “
A Quantitative Approach of Ti-6Al-4V Fretting Damage: Friction, Wear and Crack Nucleation
,”
Wear
,
257
(
9–10
), pp.
916
929
.
56.
Tang
,
Y.
,
Ji
,
P.
,
Li
,
B.
,
Zhang
,
G.
,
Ma
,
W.
,
Wang
,
F.
,
Zhang
,
X.
,
Ma
,
M.
, and
Liu
,
R.
,
2023
, “
Effect of Loading on Microstructure and Friction and Wear Behavior of an Austenite Lightweight Steel
,”
Tribol. Int.
,
177
(
May
), p.
108006
.
57.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
58.
Xiao
,
Y.
,
Mann
,
W.
,
Liu
,
C.
,
Guo
,
L.
,
He
,
B.
, and
Rong
,
Y.
,
2024
, “
Mechanism of Impact Toughness Enhancement Obtained by Globularization of ΑGB Phase for Selective Laser Melted Ti–6Al–4V Alloy
,”
Mater. Sci. Eng. A
,
892
(
Nov.
).
59.
Zhang
,
C.
,
Zhang
,
J.
,
Bao
,
X.
,
Li
,
J.
,
Zhang
,
D.
,
Liu
,
G.
, and
Sun
,
J.
,
2024
, “
Hierarchically Ordered Coherent Interfaces-Driven Ultrahigh Specific-Strength and Toughness in a Nano-Martensite Titanium Alloy
,”
Acta Mater.
,
263
(
Nov.
), p.
119540
.
60.
Şenaslan
,
F.
,
Taşdemir
,
M.
,
Çelik
,
A.
, and
Bozkurt
,
Y. B.
,
2023
, “
Enhanced Wear Resistance and Surface Properties of Oxide Film Coating on Biocompatible Ti45Nb Alloy by Anodization Method
,”
Surf. Coat. Technol.
,
469
(
Mar.
).
61.
Li
,
D.
,
Wang
,
Z.
,
Zhao
,
C.
,
Luo
,
Z.
, and
Zhang
,
W.
,
2022
, “
The Role of the Transfer Layer on the Sliding Wear Behaviour of a Cu-15Ni-8Sn Alloy Under Different Loads
,”
Tribol. Lett.
,
70
(
1
), pp.
1
13
.
62.
Leonard
,
B. D.
,
Patil
,
P.
,
Slack
,
T. S.
,
Sadeghi
,
F.
,
Shinde
,
S.
, and
Mittelbach
,
M.
,
2011
, “
Fretting Wear Modeling of Coated and Uncoated Surfaces Using the Combined Finite-Discrete Element Method
,”
ASME J. Tribol.
,
133
(
2
), p. 021601.
63.
Mo
,
J. L.
,
Zhu
,
M. H.
,
Zheng
,
J. F.
,
Luo
,
J.
, and
Zhou
,
Z. R.
,
2010
, “
Study on Rotational Fretting Wear of 7075 Aluminum Alloy
,”
Tribol. Int.
,
43
(
5–6
), pp.
912
917
.
64.
Zhou
,
Z. R.
, and
Vincent
,
L.
,
1995
, “
Mixed Fretting Regime
,”
Wear
,
181–183
(
Part 2
), pp.
531
536
.
65.
Bayer
,
R. J.
,
2004
,
Mechanical Wear Fundamentals and Testing, Revised and Expanded
,
CRC Press
,
Boca Raton, FL
.
66.
Fouvry
,
S.
,
Kapsa
,
P.
,
Zahouani
,
H.
, and
Vincent
,
L.
,
1997
, “
Wear Analysis in Fretting of Hard Coatings Through a Dissipated Energy Concept
,”
Wear
,
203–204
(
96
), pp.
393
403
.
67.
Stachowiak
,
G. W.
,
Wear-Materials, Mechanisms and Practice
,
CRC Press
,
Boca Raton, FL
.
68.
Heredia
,
S.
, and
Fouvry
,
S.
,
2010
, “
Introduction of a New Sliding Regime Criterion to Quantify Partial, Mixed and Gross Slip Fretting Regimes: Correlation With Wear and Cracking Processes
,”
Wear
,
269
(
7–8
), pp.
515
524
.
69.
Long
,
M.
, and
Rack
,
H. J.
,
2001
, “
Friction and Surface Behaviour of Selected Titanium Alloys During Reciprocating-Sliding Motion
,”
Wear
,
249
(
1–2
), pp.
157
167
.
70.
Suresh
,
K. S.
,
Geetha
,
M.
,
Richard
,
C.
,
Landoulsi
,
J.
,
Ramasawmy
,
H.
,
Suwas
,
S.
, and
Asokamani
,
R.
,
2012
, “
Effect of Equal Channel Angular Extrusion on Wear and Corrosion Behavior of the Orthopedic Ti-13Nb-13Zr Alloy in Simulated Body Fluid
,”
Mater. Sci. Eng. C
,
32
(
4
), pp.
763
771
.
71.
Obadele
,
B. A.
,
Andrews
,
A.
,
Olubambi
,
P. A.
,
Mathew
,
M. T.
, and
Pityana
,
S.
,
2015
, “
Effect of ZrO2 Addition on the Dry Sliding Wear Behavior of Laser Clad Ti6Al4V Alloy
,”
Wear
,
328–329
, pp.
295
300
.
72.
Su
,
J.
,
Jiang
,
F.
,
Li
,
J.
,
Tan
,
C.
,
Xu
,
Z.
,
Xie
,
H.
,
Liu
,
J.
, et al
,
2022
, “
Phase Transformation Mechanisms, Microstructural Characteristics and Mechanical Performances of an Additively Manufactured Ti-6Al-4V Alloy Under Dual-Stage Heat Treatment
,”
Mater. Des.
,
223
, p.
111240
.
73.
Hamdy
,
M. M.
, and
Waterhouse
,
R. B.
,
1981
, “
The Fretting Wear of Ti-6Al-4v and Aged Inconel 718 at Elevated Temperatures
,”
Wear
,
71
(
2
), pp.
237
248
.
74.
Srivyas
,
P. D.
, and
Charoo
,
M. S.
,
2020
, “
Effect of Load on the Tribological Properties of Eutectic Al-Si Reinforced n-Al2O3 Under Dry Sliding Conditions
,”
Adv. Tribol.
,
2020
, pp.
1
18
.
75.
Hardcastle
,
F. D.
,
2011
, “
Raman Spectroscopy of Titania (TiO2) Nanotubular Water-Splitting Catalysts
,”
J. Arkansas Acad. Sci.
,
65
.
You do not currently have access to this content.