Abstract

In this article, the tribological and rolling performance of rolling liquids formulated by adding modified graphene nanoparticles (MGr) and a thiadiazole derivative (T561) are evaluated. It is shown that when the content of MGr is 1.5%, the average friction coefficient and wear-rate of the rolling liquid are 0.071 and 0.51 × 10−6 mm3/N·m, respectively, representing reductions of 11.25% and 30.6% compared to the base rolling liquid. Furthermore, under the condition of 90% water content, the average friction coefficient and wear-rate of the 1.0% T561-1.5% MGr composite rolling liquid are 0.077 and 5.11 × 10−6 mm3/N·m, respectively, with reductions of 31.3% and 74.7% compared to the base liquid. Energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses indicate that this improvement is primarily attributed to the generation of a transfer film composed of sulfide, copper sulfate, copper oxide, and MGr on the copper plate when lubricated by the T561–MGr composite rolling liquid, which effectively reduces direct contact, thereby improving the rolling quality. Rolling tests indicate that the copper plate lubricated by the T561–MGr rolling liquid exhibits a profile roughness (Ra) of 0.150 μm, representing a 48.5% reduction compared to the base rolling liquid. Thus, lubrication with the T561–MGr composite rolling liquid can significantly reduce the roughness of the copper plate.

References

1.
Chavoshbashi
,
J.
,
Keshtiban
,
P. M.
, and
Oskui
,
A. E. H.
,
2024
, “
Effect of Lubricants During the Rolling Process on the Mixed Mode Fracture Behavior of the As-Rolled Material
,”
Eng. Fract. Mech.
,
308
(
9
), p.
110356
.
2.
Zhang
,
D.
,
Yang
,
G.
, and
Zhao
,
S.
,
2021
, “
Frictional Behavior During Cold Ring Compression Process of Aluminum Alloy 5052
,”
Chin. J. Aeronaut.
,
34
(
5
), pp.
47
64
.
3.
Wu
,
H.
,
Zhao
,
J.
,
Xia
,
W.
,
Cheng
,
X.
,
He
,
A.
,
Yun
,
J. H.
,
Wang
,
L.
, et al
,
2017
, “
Analysis of TiO2 Nano-Additive Water-Based Lubricants in Hot Rolling of Microalloyed Steel
,”
J. Manuf. Process.
,
27
(
1
), pp.
26
36
.
4.
Dai
,
S.
,
Zhang
,
H.
,
Liu
,
Y.
,
Guo
,
S.
,
Chen
,
J.
,
Li
,
B.
, and
Dong
,
G.
,
2025
, “
Gallium Based Liquid Metal as a Special Lubricant: A Review
,”
Friction
,
13
(
1
), p.
9441047
.
5.
Yang
,
S.
,
Shi
,
Y.
,
Zuo
,
X.
, and
Zhang
,
X.
,
2024
, “
Tribological Properties of the P and S-Free Protic Ionic Liquids as Water-Based Lubricants
,”
J. Mol. Liq.
,
414
(
1
), p.
126101
.
6.
Liu
,
S.
,
Lu
,
H.
,
Zhao
,
D.
,
Huang
,
R.
, and
Jiang
,
J.
,
2020
, “
Dynamic Rolling Force Modeling of Cold Rolling Strip Based on Mixed Lubrication Friction
,”
Int. J. Adv. Manuf. Technol.
,
108
(
1–2
), pp.
369
380
.
7.
Chen
,
Q.
,
Zhang
,
R.
,
He
,
Z.
, and
Xiong
,
L.
,
2021
, “
Tribological Performance of N-Containing Heterocyclic Triazine Derivative as Lubricant Additive in Ethylene Glycol
,”
Surf. Interface Anal.
,
53
(
12
), pp.
1027
1034
.
8.
Chen
,
L.
,
Li
,
X.
,
Ji
,
Z.
,
Zhang
,
C.
,
Li
,
W.
, and
Li
,
J.
,
2024
, “
Oil-Soluble Sulfur-Containing Organic Molybdenum as Lubricant Additives: A Review
,”
ASME J. Tribol.
,
146
(
12
), p.
120801
.
9.
Xiong
,
L.
,
He
,
Z.
,
Han
,
S.
,
Tang
,
J.
,
Wu
,
Y.
, and
Zeng
,
X.
,
2016
, “
Tribological Properties Study of N-Containing Heterocyclic Imidazoline Derivatives as Lubricant Additives in Water-Glycol
,”
Tribol. Int.
,
104
(
12
), pp.
98
108
.
10.
Zu
,
P.
,
Zhang
,
Y.
,
Li
,
Y.
,
Zhang
,
S.
,
Li
,
J.
, and
Hu
,
L.
,
2022
, “
Structure Design and Performance Investigation of 2-Mercapto-5-Methyl Thiadiazole Based Ionic Liquids as Lubricants and Corrosion Inhibitors
,”
Tribol. Int.
,
173
(
9
), p.
107682
.
11.
Tan
,
J.
,
Wang
,
Y.
,
Liu
,
M.
, and
Liu
,
J.
,
2018
, “
Study of the Effect of Overbased Calcium or Magnesium Sulfonate Combinated With Thiazole Derivatives in Rapeseed Oil on Tribological Properties
,”
Ind. Lubr. Tribol.
,
70
(
7
), pp.
1258
1267
.
12.
Wang
,
Y.
,
Wang
,
Y.
,
Kang
,
J.
,
Ma
,
G.
,
Zhu
,
L.
,
Wang
,
H.
,
Fu
,
Z.
,
Huang
,
H.
, and
Yue
,
W.
,
2021
, “
Tribological Properties of Ti-Doped Diamond-Like Carbon Coatings Under Boundary Lubrication With ZDDP
,”
ASME J. Tribol.
,
143
(
9
), p.
091901
.
13.
Zhang
,
D.
,
Li
,
Z.
,
Wei
,
X.
,
Wang
,
L.
,
Xu
,
J.
, and
Liu
,
Y.
,
2020
, “
Study Tribological Properties of MoDTC and Its Interactions With Metal Detergents
,”
ASME J. Tribol.
,
142
(
12
), p.
122201
.
14.
Xiong
,
S.
,
Liang
,
D.
,
Wu
,
H.
,
Lin
,
W.
,
Chen
,
J.
, and
Zhang
,
B.
,
2021
, “
Preparation, Characterization, Tribological and Lubrication Performances of Eu Doped CaWO4 Nanoparticle as Anti-Wear Additive in Water-Soluble Fluid for Steel Strip During Hot Rolling
,”
Appl. Surf. Sci.
,
539
(
2
), p.
148090
.
15.
Li
,
T.
,
Yang
,
Y.
,
Zhang
,
H.
,
Song
,
N.
,
Zhang
,
Y.
, and
Zhang
,
S.
,
2024
, “
Adsorption Behavior and Tribological Properties of Surface-Capped Silica Nano-Additives in Rapeseed Oil
,”
ASME J. Tribol.
,
146
(
5
), p.
051705
.
16.
Rawat
,
S. S.
,
Harsha
,
A. P.
,
Khatri
,
O. P.
, and
Wäsche
,
R.
,
2021
, “
Pristine, Reduced, and Alkylated Graphene Oxide as Additives to Paraffin Grease for Enhancement of Tribological Properties
,”
ASME J. Tribol.
,
143
(
2
), p.
021903
.
17.
Panickar
,
R.
,
Sobhan
,
C. B.
, and
Chakravorti
,
S.
,
2020
, “
Investigations on Tribological Properties of Non-Catalytic CVD Synthesized Carbon Spheres in Lubricant
,”
Diam. Relat. Mater.
,
106
(
1
), p.
107834
.
18.
Sun
,
J.
,
Du
,
S.
,
Meng
,
Y.
, and
Wu
,
P.
,
2019
, “
Analysis of Tribological Properties of Triethanolamine Modified Graphene Oxide Additive in Water
,”
ASME J. Tribol.
,
141
(
1
), p.
014501
.
19.
Chen
,
J.
,
He
,
K.
,
Fei
,
J.
,
Yu
,
J.
,
Meng
,
Z.
,
Pang
,
Y.
,
Liang
,
L.
, and
Tian
,
Z. Q.
,
2024
, “
Extreme Pressure and Anti-Wear Properties of Polycarboxylate Superplasticizer Modified 3D Porous Graphene/SiO2 as Water-Based Lubricant Additives
,”
Wear
,
540
(
3
), p.
205239
.
20.
Radhika
,
P.
,
Sobhan
,
C. B.
, and
Chakravorti
,
S.
,
2021
, “
Improved Tribological Behavior of Lubricating Oil Dispersed With Hybrid Nanoparticles of Functionalized Carbon Spheres and Graphene Nano Platelets
,”
Appl. Surf. Sci.
,
540
(
2
), p.
148402
.
21.
Patel
,
J.
, and
Kiani
,
A.
,
2019
, “
Effects of Reduced Graphene Oxide (rGO) at Different Concentrations on Tribological Properties of Liquid Base Lubricants
,”
Lubricants
,
7
(
2
), p.
11
.
22.
Qian
,
Y.
,
Gong
,
H.
,
Zhao
,
X.
,
Cao
,
L.
,
Shi
,
W.
, and
He
,
J.
,
2020
, “
Experimental Investigation on the Tribological Property of Functionalized Graphene Lubricant Against Steel
,”
Ind. Lubr. Tribol.
,
72
(
3
), pp.
307
314
.
23.
Zhang
,
D.
,
Du
,
X.
,
Bai
,
A.
, and
Wang
,
L.
,
2022
, “
The Synergistic Effect of MAO-Treated and PAO–Graphene Oil on Tribological Properties of Ti6Al4V Alloys
,”
Wear
,
510
(
12
), p.
204494
.
24.
Lei
,
W.
,
Tang
,
W.
,
Mo
,
X.
,
Tian
,
Z.
,
Shen
,
P.
, and
Ouyang
,
T.
,
2023
, “
Tribological Evaluation of Few-Layer Nitrogen-Doped Graphene as an Efficient Lubricant Additive on Engine Cylinder Liner: Experiment and Mechanism Investigation
,”
ASME J. Tribol.
,
145
(
6
), p.
062201
.
25.
Lang
,
X.
,
Suo
,
X.
,
Niu
,
Z.
,
Wang
,
L.
,
Li
,
L.
,
Zhang
,
Y.
, and
Zhang
,
D.
,
2025
, “
Tribological Performance of Modified Graphene as an Additive in Copper Wire Drawing Lubricant
,”
Ind. Lubr. Tribol.
,
77
(
2
), pp.
317
324
.
26.
Du
,
Y.
,
Dai
,
L.
,
Qian
,
L.
,
Zhou
,
F.
, and
Ma
,
Y.
,
2025
, “
Impact of a Compound Droplet on a Solid Surface: The Effect of the Shell on the Core
,”
Exp. Therm. Fluid Sci.
,
160
(
1
), p.
111330
.
27.
Jia
,
W.
,
Tang
,
Y.
,
Ning
,
F.
,
Le
,
Q.
, and
Bao
,
L.
,
2018
, “
Optimum Rolling Speed and Relevant Temperature- and Reduction-Dependent Interfacial Friction Behavior During the Break-Down Rolling of AZ31B Alloy
,”
J. Mater. Sci. Technol.
,
34
(
11
), pp.
2051
2062
.
28.
Jin
,
Q.
,
Wang
,
W.
,
Jiang
,
R.
,
Chiu
,
L. N. S.
,
Liu
,
D.
, and
Yan
,
W.
,
2017
, “
A Numerical Study on Contact Condition and Wear of Roller in Cold Rolling
,”
Metals
,
7
(
9
), p.
376
.
29.
Scardaci
,
V.
,
Zappalà
,
S.
,
Pulvirenti
,
L.
,
Condorelli
,
G. G.
,
D'Arrigo
,
G.
, and
Compagnini
,
G.
,
2024
, “
Tuning Wettability of Graphene Oxide Surfaces by Laser-Induced Reduction in Liquid Environment
,”
Surf. Interfaces
,
55
(
12
), p.
105412
.
30.
Fang
,
M.
,
Hao
,
Y.
,
Ying
,
Z.
,
Wang
,
H.
,
Cheng
,
H.-M.
, and
Zeng
,
Y.
,
2019
, “
Controllable Edge Modification of Multi-Layer Graphene for Improved Dispersion Stability and High Electrical Conductivity
,”
Appl. Nanosci.
,
9
(
4
), pp.
469
477
.
31.
Wu
,
P.
,
Chen
,
X.
,
Zhang
,
C.
,
Zhang
,
J.
,
Luo
,
J.
, and
Zhang
,
J.
,
2021
, “
Modified Graphene as Novel Lubricating Additive With High Dispersion Stability in Oil
,”
Friction
,
9
(
1
), pp.
143
154
.
32.
Rawat
,
S. S.
,
Harsha
,
A. P.
, and
Khatri
,
O. P.
,
2022
, “
Tribological Investigations of Two-Dimensional Nanostructured Lamellar Materials as Additives to Castor-Oil-Derived Lithium Grease
,”
ASME J. Tribol.
,
144
(
9
), p.
091902
.
33.
Liu
,
Y.
,
Zhang
,
H.
,
Dai
,
S.
, and
Dong
,
G.
,
2022
, “
Designing a Bioinspired Scaly Textured Surface for Improving the Tribological Behaviors of Starved Lubrication
,”
Tribol. Int.
,
173
(
9
), p.
107594
.
34.
Reil
,
M.
,
Hoffman
,
J.
,
Predecki
,
P.
, and
Kumosa
,
M.
,
2024
, “
Intermolecular Interactions in Graphene and Oxidized Graphene Nanocomposites
,”
Compos. Sci. Technol.
,
248
(
3
), p.
110433
.
35.
Wu
,
Y.
,
Zeng
,
X.
,
Ren
,
T.
,
de Vries
,
E.
, and
van der Heide
,
E.
,
2017
, “
The Emulsifying and Tribological Properties of Modified Graphene Oxide in Oil-in-Water Emulsion
,”
Tribol. Int.
,
105
(
1
), pp.
304
316
.
36.
Segal
,
V.
,
2018
, “
Modes and Processes of Severe Plastic Deformation (SPD)
,”
Materials
,
11
(
7
), p.
1175
.
37.
Abdul Basir
,
N. F.
,
Iliya Nor Za Im
,
S.
,
Abdul Wahab
,
Y.
,
Johan
,
M. R.
, and
Ghaffari Khaligh
,
N.
,
2025
, “
Impact Symmetry on Tribology Performance of 2, 5-bis-Cycloalkylsulfenyl [1, 3, 4] Thiadiazole Derivatives
,”
Tribol. Trans.
,
68
(
1
), pp.
206
223
.
38.
Chen
,
T.
,
Xia
,
Y.
,
Jia
,
Z.
,
Liu
,
Z.
, and
Zhang
,
H.
,
2014
, “
Synthesis, Characterization, and Tribological Behavior of Oleic Acid Capped Graphene Oxide
,”
J. Nanomater.
,
2014
(
1
), p.
654145
.
39.
Bao
,
T.
,
Wang
,
Z.
,
Zhao
,
Y.
,
Wang
,
Y.
, and
Yi
,
X.
,
2019
, “
Long-Term Stably Dispersed Functionalized Graphene Oxide as an Oil Additive
,”
RSC Adv.
,
9
(
67
), pp.
39230
39241
.
40.
Xiong
,
S.
,
Li
,
Y.
,
Sun
,
J.
, and
Qi
,
Y.
,
2017
, “
Integrated Computation and Experimental Investigation on the Adsorption Mechanisms of Anti-Wear and Anti-Corrosion Additives on Copper
,”
J. Phys. Chem. C
,
121
(
40
), pp.
21995
22003
.
41.
Liu
,
T.
,
Qin
,
J.
,
Wang
,
J.
, and
Li
,
J.
,
2022
, “
On the Tribological Properties of RGO–MoS2 Composites Surface Modified by Oleic Acid
,”
Tribol. Lett.
,
70
(
1
), p.
14
.
42.
Xue
,
W.
,
Ma
,
W.
,
Xu
,
X.
,
Li
,
T.
,
Zhou
,
X.
, and
Wang
,
P.
,
2017
, “
Synthesis and Properties of Thiadiazole Lubricant Additives
,”
Ind. Lubr. Tribol.
,
69
(
6
), pp.
891
896
.
43.
Dong
,
J.
,
Sun
,
Q.
,
Zhang
,
S.
,
Zhang
,
E.
,
Ma
,
W.
,
Wang
,
Y.
,
Li
,
W.
, and
Wang
,
X.
,
2025
, “
Synthesis and Tribological Study of a Novel Thiadiazole Derivative as Multifunctional Lubricant Additive
,”
Colloids Surf., A
,
707
(
2
), p.
135825
.
44.
Dante
,
R.
,
Kajdas
,
C.
, and
Kulczycki
,
A.
,
2010
, “
Theoretical Advances in the Kinetics of Tribochemical Reactions
,”
React. Kinet., Mech. Catal.
,
99
(
1
), pp.
37
46
.
45.
Bellunato
,
A.
,
Arjmandi Tash
,
H.
,
Cesa
,
Y.
, and
Schneider
,
G. F.
,
2016
, “
Chemistry at the Edge of Graphene
,”
ChemPhysChem
,
17
(
6
), pp.
785
801
.
46.
Berman
,
D.
,
Erdemir
,
A.
, and
Sumant
,
A. V.
,
2013
, “
Reduced Wear and Friction Enabled by Graphene Layers on Sliding Steel Surfaces in Dry Nitrogen
,”
Carbon
,
59
(
8
), pp.
167
175
.
47.
Liu
,
Z.
,
Luo
,
Z.
,
Zhang
,
X.
,
Yang
,
J.
,
Feng
,
Y.
, and
Peng
,
W.
,
2024
, “
Study on the Microstructure, Recrystallization, and Mechanical Properties of Hot-Press Sintered (TiC+ B4C)/6061Al Composites During Hot Rolling
,”
Mater. Charact.
,
216
(
10
), p.
114286
.
You do not currently have access to this content.