Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

A full circumferential contact mechanical modeling study considering the effect of the contact relationship between the waviness mesoscopic profile and the rolling element on bearing load distribution is carried out. In the model, a sinusoidal function is adopted to simulate the profile of the waviness section. According to the contact tangency condition, a model of the contact deformation relationship between a single rolling element and the raceways is established. On this basis, a full circumferential rolling element contact load distribution model of the bearing is established by introducing the contact deformations between all rolling elements and the raceway surfaces. Focusing on contact deformations between the full circumferential rolling elements and the raceways, this is a more accurate model and reflects the load distribution state inside the bearing more realistically. The correctness of the mechanical analysis model proposed in this article is verified by an average error of 3.06% between the more computationally efficient mechanical analysis model and a full finite element model. Further, based on the model, the influence of the waviness parameters on the load distribution inside the bearing under different types of load conditions is analyzed.

References

1.
Patel
,
V. N.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2010
, “
A Dynamic Model for Vibration Studies of Deep Groove Ball Bearings Considering Single and Multiple Defects in Races
,”
ASME J. Tribol.
,
132
(
4
), p.
041101
.
2.
Zhang
,
Y. F.
,
Fang
,
B.
,
Kong
,
L. F.
, and
Li
,
Y.
,
2020
, “
Effect of the Ring Misalignment on the Service Characteristics of Ball Bearing and Rotor System
,”
Mech. Mach. Theory
,
151
, p.
103889
.
3.
Yin
,
B. J.
, and
Xia
,
X. T.
,
2011
, “
Key Technology of Contact Problem of Deep Groove Ball Bearing Based on Ansys
,”
Adv. Mater. Res.
,
230–232
, pp.
1067
1071
.
4.
Li
,
C. C.
,
Qin
,
Y.
,
Wang
,
Y.
, and
Chen
,
H. Z.
,
2020
, “
Vibration Analysis of Deep Groove Ball Bearings With Local Defect Using a New Displacement Excitation Function
,”
ASME J. Tribol.
,
142
(
12
), p.
121202
.
5.
Jamadar
,
I. M.
, and
Vakharia
,
D. P.
,
2017
, “
A new Damage Diagnostic Approach for Deep Groove Ball Bearings Having Localized Surface Defects in the Raceways
,”
ASME J. Tribol.
,
139
(
6
), p.
061103
.
6.
Chao
,
W. Y.
,
Xin
,
H. Y.
,
Wei
,
W.
, and
Rong
,
L. J.
,
2017
, “
Frictional Analysis of Deep-Groove Ball Bearings With Varying Circumference Radial Preloads
,”
Adv. Mech. Eng.
,
9
(
5
), p.
1687814017703895
.
7.
Anoopnath
,
P. R.
,
Suresh Babu
,
V.
, and
Vishwanath
,
A. K.
,
2018
, “
Hertz Contact Stress of Deep Groove Ball Bearing
,”
Mater. Today Proc.
,
5
(
2
), pp.
3283
3288
.
8.
Fang
,
B.
,
Zhang
,
J. H.
,
Yan
,
K.
,
Hong
,
J.
, and
Yu Wang
,
M.
,
2019
, “
A Comprehensive Study on the Speed-Varying Stiffness of Ball Bearing Under Different Load Conditions
,”
Mech. Mach. Theory
,
136
, pp.
1
13
.
9.
Xu
,
L. X.
,
Yang
,
Y. H.
,
Li
,
Y. G.
,
Li
,
C. N.
, and
Wang
,
S. Y.
,
2012
, “
Modeling and Analysis of Planar Multibody Systems Containing Deep Groove Ball Bearing With Clearance
,”
Mech. Mach. Theory
,
56
, pp.
69
88
.
10.
Yu
,
G. W.
,
Su
,
M.
,
Xia
,
W.
,
Wu
,
R.
, and
Wang
,
Q.
,
2017
, “
Vibration Characteristics of Deep Groove Ball Bearing Based on 4-DOF Mathematical Model
,”
Procedia Eng.
,
174
, pp.
808
814
.
11.
Zhang
,
J. H.
,
Fang
,
B.
,
Yan
,
K.
, and
Hong
,
J.
,
2020
, “
A Novel Model for High-Speed Angular Contact Ball Bearing by Considering Variable Contact Angles
,”
J. Mech. Sci. Technol.
,
34
(
2
), pp.
809
816
.
12.
Li
,
X.
,
Yu
,
K.
,
Ma
,
H.
,
Cao
,
L.
,
Luo
,
Z. T.
,
Li
,
H. F.
, and
Che
,
L. Y.
,
2018
, “
Analysis of Varying Contact Angles and Load Distributions in Defective Angular Contact Ball Bearing
,”
Eng. Fail. Anal.
,
91
, pp.
449
464
.
13.
Liu
,
J.
,
Tang
,
C. K.
,
Wu
,
H.
,
Xu
,
Z. D.
, and
Wang
,
L. F.
,
2019
, “
An Analytical Calculation Method of the Load Distribution and Stiffness of an Angular Contact Ball Bearing
,”
Mech. Mach. Theory
,
142
, p.
103597
.
14.
Petersen
,
D.
,
Howard
,
C.
, and
Prime
,
Z.
,
2015
, “
Varying Stiffness and Load Distributions in Defective Ball Bearings: Analytical Formulation and Application to Defect Size Estimation
,”
J. Sound Vib.
,
337
, pp.
284
300
.
15.
Ignacio Amasorrain
,
J.
,
Sagartzazu
,
X.
, and
Damian
,
J.
,
2003
, “
Load Distribution in a Four Contact-Point Slewing Bearing
,”
Mech. Mach. Theory
,
38
(
6
), pp.
479
496
.
16.
Korolev
,
A. V.
,
Korolev
,
A. A.
, and
Kreheľ
,
R.
,
2014
, “
Character of Distribution of the Load Between the Balls in the Ball Bearings Under the Action Combined of External Load
,”
Mech. Mach. Theory
,
81
, pp.
54
61
.
17.
Gao
,
X. H.
,
Huang
,
X. D.
,
Wang
,
H.
, and
Chen
,
J.
,
2010
, “
Load Distribution Over Raceways of an 8-Point-Contact Slewing Bearing
,”
Appl. Mech. Mater.
,
29–32
, pp.
10
15
.
18.
Zhang
,
J. H.
,
Fang
,
B.
,
Hong
,
J.
, and
Zhu
,
Y. S.
,
2017
, “
Effect of Preload on Ball-Raceway Contact State and Fatigue Life of Angular Contact Ball Bearing
,”
Tribol. Int.
,
114
, pp.
365
372
.
19.
Gu
,
J. G.
,
Yang
,
J. Y.
,
Zhang
,
S. D.
,
You
,
S. H.
, and
Shi
,
X. L.
,
2022
, “
Modeling and Mechanical Characteristics Analysis of Matched Angular Contact Ball Bearings Under Combined Loads
,”
Adv. Mech. Eng.
,
14
(
10
), p.
16878132221132951
.
20.
Oswald
,
F. B.
,
Zaretsky
,
E. V.
, and
Poplawski
,
J. V.
,
2012
, “
Effect of Internal Clearance on Load Distribution and Life of Radially Loaded Ball and Roller Bearings
,”
Tribol. Trans.
,
55
(
2
), pp.
245
265
.
21.
Yu
,
C. T.
,
Xu
,
L. X.
, and
Yu
,
X. D.
,
2014
, “
Research on the Mechanical Properties of “Z” Type Double-Decker Ball Bearings
,”
ASME J. Tribol.
,
136
(
1
), p.
011102
.
22.
Tomović
,
R.
,
2020
, “
Load Calculation of the Most Loaded Rolling Element for a Rolling Bearing With Internal Radial Clearance
,”
Appl. Sci.
,
10
(
19
), p.
6934
.
23.
Ren
,
X. L.
,
Zhai
,
J.
, and
Ren
,
G.
,
2017
, “
Calculation of Radial Load Distribution on Ball and Roller Bearings With Positive, Negative and Zero Clearance
,”
Int. J. Mech. Sci.
,
131
, pp.
1
7
.
24.
Lazovic
,
T.
,
Ristivojevic
,
M.
, and
Mitrovic
,
R.
,
2008
, “
Mathematical Model of Load Distribution in Rolling Bearing
,”
FME Trans.
,
36
(
4
), pp.
189
196
.
25.
Sinha
,
R.
,
Sahoo
,
V.
,
Paswan
,
M.
, and
Routh
,
B.
,
2023
, “
An Analytical Method of Axial Load Distribution of Deep Groove Variable Clearance Radial Ball Bearings
,”
Mech. Based Des. Struct. Mach.
,
52
(
3
), pp.
1669
1685
.
26.
Sinha
,
R.
,
Sahoo
,
V.
, and
Paswan
,
M.
,
2021
, “
Radial Load Distribution by Balls in a Ball Bearing With Variable Clearance
,”
Mech. Based Des. Struct. Mach.
,
51
(
6
), pp.
3538
3563
.
27.
Ricci
,
M.
,
2010
, “
Static Load Distribution in Ball Bearings Including the Effects of Temperature and Fit
,”
Tribol. Des.
,
66
, pp.
223
234
.
28.
Chen
,
S. J.
,
Ma
,
F. B.
,
Ji
,
P.
, and
An
,
Q.
,
2016
, “
Effects of Axial Preloading Displacement and Off-Sized Balls and Raceway Error on Mechanical Performance of Angular Contact Ball Bearings
,”
J. Multibody Dyn.
,
230
(
4
), pp.
293
306
.
29.
Kohar
,
R.
, and
Hrcek
,
S.
,
2016
, “
The Effect of Fits Stiffness on Distribution of Internal Loading in Rolling Bearings
,”
Proceedings of the ICMD
,
Prague
,
Sept. 09–12, 2014
, pp.
235
241
.
30.
Zhang
,
H. W.
,
Chen
,
S. G.
,
Dou
,
Y. T.
,
Fan
,
H. M.
, and
Wang
,
Y. Q.
,
2021
, “
Mechanical Model and Contact Properties of Double row Slewing Ball Bearing for Wind Turbine
,”
Rev. Adv. Mater. Sci.
,
60
(
1
), pp.
112
126
.
31.
Bae
,
G. H.
,
Tong
,
V. C.
, and
Hong
,
S. W.
,
2016
, “
Fatigue Life Analysis for Angular Contact Ball Bearing With Angular Misalignment
,”
J. Korean Soc. Precis. Eng.
,
33
(
1
), pp.
53
61
.
32.
Sun
,
M. J.
,
Xu
,
H. J.
, and
An
,
Q.
,
2022
, “
Noise Calculation Method of Deep Groove Ball Bearing Caused by Vibration of Rolling Elements Considering Raceway Waviness
,”
J. Mech. Eng. Sci.
,
236
(
8
), pp.
4429
4439
.
33.
Zhang
,
Q. T.
,
Yang
,
J. P.
, and
An
,
Q.
,
2018
, “
Noise Calculation Method for Deep Groove Ball Bearing With Considering Raceway Surface Waviness and Roller Size Error
,”
Front. Mech. Eng.
,
4
, pp.
1
15
.
34.
Hou
,
P. P.
,
Wang
,
L. Q.
,
Xie
,
Z. J.
, and
Peng
,
Q. Y.
,
2021
, “
An Improved Model for Investigating the Vibration Characteristics of Ball Bearing Owing to Outer Race Waviness Under High Speed
,”
Noise Control Eng. J.
,
69
(
2
), pp.
89
101
.
35.
Jang
,
G. H.
, and
Jeong
,
S. W.
,
2002
, “
Nonlinear Excitation Model of Ball Bearing Waviness in a Rigid Rotor Supported by Two or More Ball Bearings Considering Five Degrees of Freedom
,”
ASME J. Tribol.
,
124
(
1
), pp.
82
90
.
36.
Tandon
,
N.
, and
Choudhury
,
A.
,
2000
, “
A Theoretical Model to Predict the Vibration Response of Rolling Bearings in a Rotor Bearing System to Distributed Defects Under Radial Load
,”
ASME J. Tribol.
,
122
(
3
), pp.
609
615
.
37.
Xu
,
L. X.
, and
Li
,
Y. G.
,
2015
, “
Modeling of a Deep-Groove Ball Bearing With Waviness Defects in Planar Multibody System
,”
Multibody Syst. Dyn.
,
33
(
3
), pp.
229
258
.
38.
Shah
,
D. S.
, and
Patel
,
V. N.
,
2018
, “
Theoretical and Experimental Vibration Studies of Lubricated Deep Groove Ball Bearings Having Surface Waviness on Its Races
,”
Measurement
,
129
, pp.
405
423
.
39.
Liu
,
R. G.
,
Xiong
,
X.
, and
Zhou
,
C.
,
2019
, “
Effects of Raceway Waviness on Dynamic Behaviors of Deep Groove Ball Bearing
,”
Mater. Sci. Eng.
,
493
, pp.
1
8
.
40.
Liu
,
J.
,
Li
,
X. B.
,
Ding
,
S. Z.
, and
Pang
,
R. K.
,
2020
, “
A Time-Varying Friction Moment Calculation Method of an Angular Contact Ball Bearing With the Waviness Error
,”
Mech. Mach. Theory
,
148
, p.
103799
.
41.
Liu
,
J.
,
Xu
,
Z. D.
, and
An
,
C. Y.
,
2023
, “
An Analysis of the Load Distribution Characteristics of a Cylindrical Roller Bearing Including the Component Deformation and Waviness
,”
ASME J. Tribol.
,
145
(
2
), p.
021201
.
42.
Wang
,
Y. S.
, and
Cao
,
J. W.
,
2015
, “
Determination of the Precise Static Load-Carrying Capacity of Pitch Bearings Based on Static Models Considering Clearance
,”
Int. J. Mech. Sci.
,
100
, pp.
209
215
.
You do not currently have access to this content.