Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Misalignment results in uneven force on the contact surface, which not only increases friction loss but also shortens the bearing's service life, especially for water-lubricated bearings. In this study, an advanced approach is investigated to optimize the performance of the water-lubricated thrust bearings, in which the surface textures are introduced and optimized using topological optimization. By this approach, the influence of speed, misalignment angle, surface roughness, and lubrication state can be analyzed. The results demonstrate that with the increase in speed and the decrease in film thickness ratio, the topological texture's shape becomes increasingly slender. Additionally, the increase in misalignment angle results in a simpler texture. When the film thickness ratio remains unchanged, a decrease in surface roughness leads to a greater number of texture branches, resulting in a finer texture overall. When compared to the thrust bearing with the groove type texture, the thrust bearing with the optimized texture was found to have a higher load-carrying capacity, in some cases up to six times higher. The proposed approach offers valuable insights and directions for further research focused on enhancing the efficiency of texture optimization.

References

1.
Wang
,
L.
, and
Jiang
,
S. Y.
,
2014
, “
Centrifugal Effects on the Dynamic Characteristics of High Speed Hydrostatic Thrust Bearing Lubricated by Low Viscosity Fluid
,”
Proc. Inst. Mech. Eng., Part J
,
228
(
8
), pp.
860
871
.
2.
Cable
,
T. A.
,
San Andrés
,
L.
, and
Wygant
,
K.
,
2016
, “
On the Predicted Effect of Angular Misalignment on the Performance of Oil Lubricated Thrust Collars in Integrally Geared Compressors
,”
Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
, Vol. 7b 139(4), p.
042503
.
3.
Elsayed
,
E. K.
,
Sayed
,
H.
, and
El-Sayed
,
T. A.
,
2023
, “
Analysis of Second-Order Thrust Bearing Coefficients Considering Misalignment Effect
,”
J. Vib. Eng. Technol.
,
12
(
2
), pp.
1957
1977
.
4.
Liu
,
B. B.
,
Zhao
,
W.
,
Bai
,
S. J.
,
Hu
,
B.
,
Wu
,
K.
, and
Zhao
,
Q. J.
,
2023
, “
The Effect of Misalignment on the Performance of Tilting Pad Thrust Bearing With TEHD Coupling Model and Turbulence Model
,”
Adv. Mech. Eng.
,
15
(
6
), p.
16878132231176191
.
5.
Wang
,
Y. S.
,
Wang
,
Q. J.
, and
Lin
,
C.
,
2006
, “
A Mixed-EHL Analysis of Effects of Misalignments and Elastic Deformations on the Performance of a Coupled Journal-Thrust Bearing System
,”
Tribol. Int.
,
39
(
4
), pp.
281
289
.
6.
Xiang
,
G.
,
Han
,
Y. F.
,
Wang
,
J. X.
,
Xiao
,
K.
, and
Li
,
J. Y.
,
2021
, “
Influence of Axial Microvibration on the Transient Hydrodynamic Lubrication Performance of Misaligned Journal-Thrust Microgrooved Coupled Bearings Under Water Lubrication
,”
Tribol. Trans.
,
64
(
4
), pp.
579
592
.
7.
Ivanov
,
A. N.
,
Ivanov
,
N. M.
, and
Yun
,
V. K.
,
2017
, “
Axial Forces in Centrifugal Compressor Couplings
,”
Oil Gas Eng.
,
1876
(
1
), p.
020056
.
8.
Iliev
,
H.
,
1999
, “
Failure Analysis of Hydro-Generator Thrust Bearing
,”
Wear
,
225
, pp.
913
917
.
9.
Yang
,
T. Y.
,
Cai
,
J. L.
,
Wang
,
L. W.
,
Tang
,
D. X.
,
Chen
,
S. A.
, and
Wang
,
J. X.
,
2023
, “
Numerical Analysis of Turbulence Effect for Coupled Journal-Thrust Water-Lubricated Bearing With Micro Grooves
,”
ASME J. Tribol.
,
145
(
8
), p.
084101
.
10.
Jiang
,
S. Y.
,
Liu
,
P. F.
, and
Lin
,
X. H.
,
2022
, “
Study on Static Characteristics of Water-Lubricated Textured Spiral Groove Thrust Bearing Using Laminar Cavitating Flow Lubrication Model
,”
ASME J. Tribol.
,
144
(
4
), p.
041803
.
11.
Feng
,
H. H.
, and
Peng
,
L. P.
,
2018
, “
Numerical Analysis of Water-Lubricated Thrust Bearing With Groove Texture Considering Turbulence and Cavitation
,”
Ind. Lubr. Tribol.
,
70
(
6
), pp.
1127
1136
.
12.
Atwal
,
J.
, and
Pandey
,
R.
,
2021
, “
Performance Improvement of Water-Lubricated Thrust Pad Bearing Operating With the Turbulent Flow Using a New Micro-Pocket Design
,”
Tribol. Int.
,
154
, p.
106738
.
13.
Scaraggi
,
M.
,
2014
, “
Optimal Textures for Increasing the Load Support in a Thrust Bearing Pad Geometry
,”
Tribol. Lett.
,
53
(
1
), pp.
127
143
.
14.
Zhang
,
H.
,
Liu
,
Y.
,
Hafezi
,
M.
,
Hua
,
M.
, and
Dong
,
G. N.
,
2020
, “
A Distribution Design for Circular Concave Textures on Sectorial Thrust Bearing Pads
,”
Tribol. Int.
,
149
, p.
105733
.
15.
Lyu
,
B. G.
,
Jing
,
L. L.
,
Meng
,
X. H.
, and
Liu
,
R. C.
,
2022
, “
Texture Optimization and Verification for the Thrust Bearing Used in Rotary Compressors Based on a Transient Tribo-Dynamics Model
,”
ASME J. Tribol.
,
144
(
8
), p.
081801
.
16.
Gong
,
R.
,
Cheng
,
X.
, and
Jiao
,
M.
,
2022
, “
Texture Shape Optimization Induced Higher Load Carrying Capacity of Sealing Ring Based on Improved PSO Algorithm
,”
Proc. Inst. Mech. Eng., Part J
,
237
(
3
), pp.
469
483
.
17.
Codrignani
,
A.
,
Savio
,
D.
,
Pastewka
,
L.
,
Frohnapfel
,
B.
, and
van Ostayen
,
R.
,
2020
, “
Optimization of Surface Textures in Hydrodynamic Lubrication Through the Adjoint Method
,”
Tribol. Int.
,
148
, p.
106352
.
18.
Tu
,
Z. R.
,
Meng
,
X. K.
,
Yi
,
M.
, and
Peng
,
X. D.
,
2021
, “
Shape Optimization of Hydrodynamic Textured Surfaces for Enhancing Load-Carrying Capacity Based on Level Set Method
,”
Tribol. Int.
,
162
, p.
107136
.
19.
Shen
,
C.
, and
Khonsari
,
M. M.
,
2015
, “
Numerical Optimization of Texture Shape for Parallel Surfaces Under Unidirectional and Bidirectional Sliding
,”
Tribol. Int.
,
82
, pp.
1
11
.
20.
Fesanghary
,
M.
, and
Khonsari
,
M. M.
,
2013
, “
On the Optimum Groove Shapes for Load-Carrying Capacity Enhancement in Parallel Flat Surface Bearings: Theory and Experiment
,”
Tribol. Int.
,
67
, pp.
254
262
.
21.
Zhang
,
G. J.
,
Li
,
J.
,
Tian
,
Z. X.
,
Huang
,
Y.
, and
Chen
,
R. C.
,
2016
, “
Film Shape Optimization for Two-Dimensional Rough Slider Bearings
,”
Tribol. Trans.
,
59
(
1
), pp.
17
27
.
22.
Jakobsson
,
B.
, and
Floberg
,
L.
,
1957
,
The Finite Journal Bearing, Considering Vaporization
,
Gumperts Förlag
.
23.
Olsson
,
K.-O.
,
1965
,
Cavitation in Dynamically Loaded Bearings
,
Scandinavian University Books
,
Goteborg, Sweden
.
24.
Gu
,
C.
,
Sheng
,
X.
,
Zhang
,
D.
, and
Meng
,
X.
,
2024
, “
Thermal Mixed Elastohydrodynamic Lubrication Modeling and Analysis of the Lubricated Non-Conformal Contacts With Non-Gaussian Surface Roughness and Coating
,”
Tribol. Int.
,
194
, p.
109541
.
25.
Gu
,
C. X.
,
Meng
,
X. H.
,
Xie
,
Y. B.
, and
Zhang
,
D.
,
2016
, “
Mixed Lubrication Problems in the Presence of Textures: An Efficient Solution to the Cavitation Problem With Consideration of Roughness Effects
,”
Tribol. Int.
,
103
, pp.
516
528
.
26.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
2016
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
633
.
27.
Wang
,
F. W.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
On Projection Methods, Convergence and Robust Formulations in Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
43
(
6
), pp.
767
784
.
You do not currently have access to this content.