Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Environmental concerns have led to an increase in the development of bio-lubricants during the last ten years. Many tribological studies address the findings of various types of bio-based lubricant performance derived from plant-based edible and non-edible oils in different operating conditions. However, those tribological tests were limited to workbench tribometers. In the present work, experimental investigations were carried out to evaluate the lubrication performance of functionalized multiwall carbon nanotubes (FMWCNTs) blended palm oil compared to mineral oil. Steel bearings are commonly used to minimize the effect of dynamic loads coming from the driven end in sliding/rolling conditions of the bearing. The wear severity on the bearing surfaces was examined using a scanning electron microscope (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX). The results of the 3D-optical profilometer provided detailed information on surface profiles and roughness created on bearing surfaces under machine operating conditions. FFT-bearing vibration results were correlated with the surface degradation study of SEM analysis. Zeta-potential values reveal that the nanomaterial showed stable performance in the lubricant for 80% of the total machine operating duration. Overall, experimental studies indicate that the tribological and vibration response of nanomaterial blended bio-oil-lubricated bearing exhibited better results than that of mineral oil-lubricated bearings.

References

1.
Bokade
,
V. V.
, and
Yadav
,
G. D.
,
2007
, “
Synthesis of Bio-Diesel and Bio-Lubricant by Transesterification of Vegetable Oil With Lower and Higher Alcohols Over Heteropolyacids Supported by Clay (K-10)
,”
Process Saf. Environ. Prot.
,
85
(
5
), pp.
372
377
.
2.
Li
,
T.
,
Yang
,
Y.
,
Zhang
,
H.
,
Song
,
N.
,
Zhang
,
Y.
, and
Zhang
,
S.
,
2024
, “
Adsorption Behavior and Tribological Properties of Surface-Capped Silica Nano-Additives in Rapeseed Oil
,”
ASME J. Tribol.
,
146
(
5
), p.
051705
.
3.
Gemsprim
,
M. S.
,
Babu
,
N.
, and
Udhayakumar
,
S.
,
2021
, “
Tribological Evaluation of Vegetable Oil-Based Lubricant Blends
,”
Mater. Today: Proc.
,
37
(
2
), pp.
2660
2665
.
4.
Yadav
,
A.
,
Singh
,
Y.
, and
Negi
,
P.
,
2021
, “
A Review on the Characterization of Bio Based Lubricants From Vegetable Oils and Role of Nanoparticles as Additives
,”
Mater. Today: Proc.
,
46
(
20
), pp.
10513
10517
.
5.
Erhan
,
S. Z.
,
Sharma
,
B. K.
, and
Perez
,
J. M.
,
2006
, “
Oxidation and Low Temperature Stability of Vegetable Oil-Based Lubricants
,”
Ind. Crops Prod.
,
24
(
3
), pp.
292
299
.
6.
Kamarapu
,
S. K.
,
Muniyappa
,
A.
,
Bheemappa
,
S.
,
Vardhaman
,
B. A.
,
Ramkumar
,
J.
, and
Rangappa
,
D.
,
2022
, “
Tribological and Vibration Characteristics of the Palm-Mineral Blend as a Sustainable Lubricant in Steel-Steel Contacts
,”
Biomass. Convers. Biorefin.
, pp.
1
31
.
7.
Azman
,
S. S. N.
,
Zulkifli
,
N. W. M.
,
Masjuki
,
H.
,
Gulzar
,
M.
, and
Zahid
,
R.
,
2016
, “
Study of Tribological Properties of Lubricating Oil Blend Added With Graphene Nanoplatelets
,”
J. Mater Res.
,
31
(
13
), pp.
1932
1938
.
8.
Amiruddin
,
H.
,
Abdollah
,
M. F. B.
, and
Mohamad Nizar
,
M. A. D.
,
2020
, “
Measurement of Roller Chain Wear Lubricated With Palm Oil-Based Hexagonal Boron Nitride Nanoparticles
,”
Ind. Lubr. Tribol.
,
72
(
10
), pp.
1199
1204
.
9.
Sharma
,
U. C.
, and
Sachan
,
S.
,
2019
, “
Friction and Wear Behavior of Karanja Oil Derived Biolubricant Base Oil
,”
SN Appl. Sci.
,
1
(
7
), p.
668
.
10.
Sapawe
,
N.
,
Samion
,
S.
,
Zulhanafi
,
P.
,
Nor Azwadi
,
C. S.
, and
Hanafi
,
M. F.
,
2016
, “
Effect of Addition of Tertiary-Butyl Hydroquinone Into Palm Oil to Reduce Wear and Friction Using Four-Ball Tribotester
,”
Tribol. Trans.
,
59
(
5
), pp.
883
888
.
11.
Gupta
,
R. N.
,
Harsha
,
A. P.
, and
Singh
,
S.
,
2018
, “
Tribological Study on Rapeseed Oil With Nano-Additives in Close Contact Sliding Situation
,”
Appl. Nanosci.
,
8
(
4
), pp.
567
580
.
12.
Singh
,
Y.
,
Sharma
,
A.
,
Singh
,
N.
, and
Singla
,
A.
,
2019
, “
Effect of Alumina Nanoparticles as Additive on the Friction and Wear Behavior of Polanga-Based Lubricant
,”
SN Appl. Sci.
,
1
(
3
), p.
281
.
13.
Sabarinath
,
S.
,
Rajendrakumar
,
P.
, and
Prabhakaran Nair
,
K.
,
2019
, “
Evaluation of Tribological Properties of Sesame Oil as Biolubricant With SiO2 Nanoparticles and Imidazolium-Based Ionic Liquid as Hybrid Additives
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
233
(
9
), pp.
1306
1317
.
14.
Shafi
,
W. K.
,
Raina
,
A.
, and
Ul Haq
,
M. I.
,
2018
, “
Friction and Wear Characteristics of Vegetable Oils Using Nanoparticles for Sustainable Lubrication
,”
Tribol. Mater. Surf. Interfaces
,
12
(
1
), pp.
27
43
.
15.
Hamdan
,
S. H.
,
Chong
,
W. W. F.
,
Ng
,
J.-H.
,
Chong
,
C. T.
, and
Zhang
,
H.
,
2018
, “
Nano-Tribological Characterisation of Palm Oil-Based Trimethylolpropane Ester for Application as Boundary Lubricant
,”
Tribol. Int.
,
127
, pp.
1
9
.
16.
Singh
,
Y.
,
Singh
,
N. K.
, and
Sharma
,
A.
,
2021
, “
Effect of SiO2 Nanoparticles on the Tribological Behavior of Balanites Aegytiaca (Desert Date) Oil-Based Biolubricant
,”
J. Bio- Tribo-Corros.
,
7
(
1
), p.
16
.
17.
Chaurasia
,
S. K.
,
Sehgal
,
A. K.
, and
Singh
,
N. K.
,
2020
, “
Improved Lubrication Mechanism of Chemically Modified Mahua (Madhuca Indica) Oil With Addition of Copper Oxide Nanoparticles
,”
J. Bio- Tribo-Corros.
,
6
(
3
), p.
94
.
18.
Cortes
,
V.
,
Sanchez
,
K.
,
Gonzalez
,
R.
,
Alcoutlabi
,
M.
, and
Ortega
,
J. A.
,
2020
, “
The Performance of SiO2 and TiO2 Nanoparticles as Lubricant Additives in Sunflower Oil
,”
Lubricants
,
8
(
1
), p.
10
.
19.
Dhanola
,
A.
, and
Garg
,
H.
,
2021
, “
Dispersion Stability and Rheology Study of Canola Oil Containing TiO2 Nanoadditives for Tribological Applications: An Experimental Approach
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
235
(
9
), pp.
1765
1781
.
20.
Mushtaq
,
Z.
, and
Hanief
,
M.
,
2021
, “
Evaluation of Tribological Performance of Jatropha Oil Modified With Molybdenum Disulphide Micro-Particles for Steel–Steel Contacts
,”
ASME J. Tribol.
,
143
(
2
), p.
021401
.
21.
Zulfattah
,
Z. M.
,
Zulkifli
,
N. W. M.
,
Masjuki
,
H. H.
,
Harith
,
M. H.
,
Syahir
,
A. Z.
,
Norain
,
I.
,
Yusoff
,
M. N. A. M.
,
Jamshaid
,
M.
, and
Arslan
,
A.
,
2021
, “
Friction and Wear Performance of Oleate-Based Esters With Two-, Three-, and Four-Branched Molecular Structure in Pure Form and Mixture
,”
ASME J. Tribol.
,
143
(
1
), p.
011901
.
22.
Barsari
,
M. A. N.
, and
Shirneshan
,
A.
,
2019
, “
An Experimental Study of Friction and Wear Characteristics of Sunflower and Soybean Oil Methyl Ester Under the Steady-State Conditions by the Four-Ball Wear Testing Machine
,”
ASME J. Tribol.
,
141
(
4
), p.
044501
.
23.
Paladugu
,
M.
,
Lucas
,
D. R.
, and
Scott Hyde
,
R.
,
2018
, “
Effect of Lubricants on Bearing Damage in Rolling-Sliding Conditions: Evolution of White Etching Cracks
,”
Wear
,
398–399
, pp.
165
177
.
24.
Xiao
,
L.
,
Rosen
,
B.-G.
,
Amini
,
N.
, and
Nilsson
,
P. H.
,
2003
, “
A Study on the Effect of Surface Topography on Rough Friction in Roller Contact
,”
Wear
,
254
(
11
), pp.
1162
1169
.
25.
Pandey
,
S.
, and
Amarnath
,
M.
,
2021
, “
Applications of Vibro-Acoustic Measurement and Analysis in Conjunction With Tribological Parameters to Assess Surface Fatigue Wear Developed in the Roller-Bearing System
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
235
(
10
), pp.
2034
2055
.
26.
Ajay Vardhaman
,
B. S.
,
Amarnath
,
M.
,
Ramkumar
,
J.
, and
Rai
,
P. K.
,
2018
, “
Experimental Investigations to Enhance the Tribological Performance of Engine Oil by Using Nano-Boric Acid and Functionalized Multiwalled Carbon Nanotubes: A Comparative Study to Assess Wear in Bronze Alloy
,”
J. Mater. Eng. Perform.
,
27
(
6
), pp.
2782
2795
.
27.
Vardhaman
,
B. A.
,
Amarnath
,
M.
,
Ramkumar
,
J.
, and
Mondal
,
K.
,
2020
, “
Enhanced Tribological Performances of Zinc Oxide/MWCNTs Hybrid Nanomaterials as the Effective Lubricant Additive in Engine Oil
,”
Mater. Chem. Phys.
,
253
, p.
123447
.
28.
Sateesh Kumar
,
P.
,
Amarnath
,
M.
,
Devaraj
,
S.
,
Vardhaman
,
B. A.
, and
Ramkumar
,
J.
,
2022
, “
Tribological Performance Enhancement of Bronze Alloy Through Microwave Irradiation: Fundamental Tribo-Tests and Real-Time Journal Bearing Applications
,”
J. Mater. Eng. Perform.
,
32
, pp.
1
16
.
29.
Li
,
X.
,
Sosa
,
M.
, and
Olofsson
,
U.
,
2015
, “
A Pin-on-Disc Study of the Tribology Characteristics of Sintered Versus Standard Steel Gear Materials
,”
Wear
,
340
, pp.
31
40
.
30.
Mahian
,
O.
,
Kolsi
,
L.
,
Amani
,
M.
,
Estellé
,
P.
,
Ahmadi
,
G.
,
Kleinstreuer
,
C.
,
Marshall
,
J. S.
, et al
,
2019
, “
Recent Advances in Modeling and Simulation of Nanofluid Flows-Part I: Fundamentals and Theory
,”
Phys. Rep.
,
790
, pp.
1
48
.
31.
Hussein
,
O. A.
,
Habib
,
K.
,
Nasif
,
M.
,
Saidur
,
R.
, and
Muhsan
,
A. S.
,
2020
, “
Investigation of Stability, Dispersion, and Thermal Conductivity of Functionalized Multi-Walled Carbon Nanotube Based Nanofluid
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
863
(
1
), p.
012012
.
32.
Liu
,
Z.
,
Li
,
F.
, and
Shen
,
J.
,
2019
, “
Effect of Oxidation of Jatropha Curcas-Derived Biodiesel on Its Lubricating Properties
,”
Energy Sustainable Dev.
,
52
, pp.
33
39
.
33.
Asakuma
,
Y.
,
Maeda
,
K.
,
Kuramochi
,
H.
, and
Fukui
,
K.
,
2009
, “
Theoretical Study of the Transesterification of Triglycerides to Biodiesel Fuel
,”
Fuel
,
88
(
5
), pp.
786
791
.
34.
Fox
,
N.
,
Tyrer
,
B.
, and
Stachowiak
,
G.
,
2004
, “
Boundary Lubrication Performance of Free Fatty Acids in Sunflower Oil
,”
Tribol. Lett.
,
16
(
4
), pp.
275
281
.
35.
Geller
,
D. P.
, and
Goodrum
,
J. W.
,
2004
, “
Effects of Specific Fatty Acid Methyl Esters on Diesel Fuel Lubricity
,”
Fuel
,
83
(
17
), pp.
2351
2356
.
36.
Kerrouche
,
R.
,
Dadouche
,
A.
,
Mamou
,
M.
, and
Boukraa
,
S.
,
2021
, “
Power Loss Estimation and Thermal Analysis of an Aero-Engine Cylindrical Roller Bearing
,”
Tribol. Trans.
,
64
(
6
), pp.
1079
1094
.
37.
Prasad
,
D. K.
,
Amarnath
,
M.
,
Chelladurai
,
H.
, and
Santhosh Kumar
,
K.
,
2023
, “
Assessing the Fatigue Wear Effect on Traction Coefficient and Dynamic Performance of Roller Bearing
,”
Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl.
,
238
(
4
), pp.
595
614
.
38.
Prasad
,
D. K.
,
Amarnath
,
M.
, and
Chelladurai
,
H.
,
2023
, “
Impact of Multi-Walled Carbon Nanotubes as an Additive in Lithium Grease to Enhance the Tribological and Dynamic Performance of Roller Bearing
,”
Tribol. Lett.
,
71
(
3
), p.
88
.
39.
Lonkar
,
S. P.
,
Kushwaha
,
O. S.
,
Leuteritz
,
A.
,
Heinrich
,
G.
, and
Singh
,
R. P.
,
2012
, “
Self Photostabilizing UV-Durable MWCNT/Polymer Nanocomposites
,”
RSC Adv.
,
2
(
32
), pp.
12255
12262
.
40.
Mohd Yusof
,
N. F.
, and
Ripin
,
Z. M.
,
2014
, “
Analysis of Surface Parameters and Vibration of Roller Bearing
,”
Tribol. Trans.
,
57
(
4
), pp.
715
729
.
You do not currently have access to this content.