Abstract

The axial piston pump (APP) is the core power component of hydraulic systems. Its friction pair wear can cause the degradation of piston pump performance until the function is completely lost or the service life is terminated. The slipper pair, prone to wear failure, is selected as the research object in this paper. The prediction method for the eccentric wear of the slipper pair is established, and the gradual change rules of the performance with wear accumulation are explored. The micro-surface rough peak contact and the stress state of the slipper pair are analyzed, and the mixed lubrication model of the slipper pair is established based on the elastohydrodynamic lubrication (EHL) model of the slipper pair. Grid discretization of a sealing belt of the slipper pair is carried out based on two-body abrasive wear and Archard adhesive wear models to improve the prediction method for eccentric wear of the slipper pair. The effectiveness of the proposed method is verified by a surface morphology analysis of the worn slipper. The results showed that the wear depth and wear width of the outer edge of the slipper bottom surface are positively correlated with the oil discharge pressure and the inclination angle of the swashplate, and negatively correlated with the rotational speed and the dynamic oil viscosity. The outer edge of the slipper is wedged after eccentric wear, and the hydrodynamic effect of the lubricating oil film of the slipper pair is enhanced. Hence, proper wear can improve the lubrication performance of the slipper pair.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Chao
,
Q.
,
Shao
,
Y.
,
Liu
,
C.
, and
Yang
,
X.
,
2023
, “
Health Evaluation of Axial Piston Pumps Based on Density Weighted Support Vector Data Description
,”
Reliab. Eng. Syst. Saf.
,
237
, p.
109354
.
2.
Tang
,
H.
,
Ren
,
Y.
,
Xiang
,
J.
, and
Kumar
,
A.
,
2023
, “
Numerical and Experimental Analysis of Rotor-Bearing System for Axial Piston Pump With Misalignment-Rubbing Coupling Fault
,”
J. Sound Vib.
,
559
, p.
117786
.
3.
Du
,
Z.
, and
Zhang
,
Y.
,
2022
, “
A Time-Varying Reliability-Based Robust Design Method Considering Overall Efficiency of Axial Piston Pump
,”
Proc. Inst. Mech. Eng. Part O J. Risk Relaib.
,
236
(
6
), pp.
936
954
.
4.
Lyu
,
F.
,
Zhang
,
J.
,
Sun
,
G.
,
Xu
,
B.
,
Pan
,
M.
,
Huang
,
X.
, and
Xu
,
H.
,
2020
, “
Research on Wear Prediction of Piston/Cylinder Pair in Axial Piston Pumps
,”
Wear
,
456–457
, p.
203338
.
5.
He
,
W.
,
Huang
,
J.
,
Hao
,
H.
,
Quan
,
L.
,
Ji
,
S.
, and
Zhao
,
B.
,
2020
, “
Design and Analysis of a Swashplate Control System for an Asymmetric Axial Piston Pump
,”
ASME J. Dyn. Syst. Meas. Control
,
142
(
2
), p.
021005
.
6.
Lyu
,
F.
,
Ye
,
S.
,
Zhang
,
J.
,
Xu
,
B.
,
Huang
,
W.
,
Xu
,
H.
, and
Huang
,
X.
,
2021
, “
Theoretical and Simulation Investigations on Flow Ripple Reduction of Axial Piston Pumps Using Nonuniform Distribution of Pistons
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
4
), p.
041008
.
7.
Haidak
,
G.
, and
Wang
,
D.
,
2022
, “
Analysis of Damage and Failure Mechanism Under a Lubricated Slipper/Swashplate Interface in Axial Piston Machines
,”
Procedia Struct. Integrity
,
35
, pp.
124
131
.
8.
Gupta
,
R.
,
Miglani
,
A.
, and
Kankar
,
P. K.
,
2023
, “
Performance Prediction of an Axial Piston Pump With Increasing Severity of Leakage Fault in Single and Multiple Cylinders
,”
ASME J. Dyn. Syst. Meas. Control
,
145
(
2
), p.
021001
.
9.
Ma
,
Z.
,
Wang
,
S.
,
Liao
,
H.
, and
Zhang
,
C.
,
2019
, “
Engineering-Driven Performance Degradation Analysis of Hydraulic Piston Pump Based on the Inverse Gaussian Process
,”
Qual. Reliab. Eng. Int.
,
35
(
7
), pp.
2278
2296
.
10.
Ma
,
J.
,
Chen
,
J.
,
Li
,
J.
,
Li
,
Q.
, and
Ren
,
C.
,
2015
, “
Wear Analysis of Swash Plate/Slipper Pair of Axis Piston Hydraulic Pump
,”
Tribol. Int.
,
90
, pp.
467
472
.
11.
Chao
,
Q.
,
Zhang
,
J.
,
Xu
,
B.
,
Wang
,
Q.
,
Lyu
,
F.
, and
Li
,
K.
,
2022
, “
Integrated Slipper Retainer Mechanism to Eliminate Slipper Wear in High-Speed Axial Piston Pumps
,”
Front. Mech. Eng.
,
17
(
1
), pp.
1
13
.
12.
Tang
,
H.
,
Ren
,
Y.
, and
Kumar
,
A.
,
2022
, “
Effects of Surface Roughness on the Mixed Thermal Elstohydrodynamic Lubrication Characteristics of Surface Textured Slipper Bearing in Axial Piston Pump
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
236
(
12
), pp.
2305
2327
.
13.
Jiang
,
J.
, and
Wang
,
Z.
,
2021
, “
Optimization and Influence of Micro-chamfering on Oil Film Lubrication Characteristics of Slipper/Swashplate Interface Within Axial Piston Pump
,”
Energies
,
14
(
7
), p.
1961
.
14.
Liu
,
Y.
,
Wu
,
D.
,
He
,
X.
, and
Li
,
Z.
,
2009
, “
Materials Screening of Matching Pairs in a Water Hydraulic Piston Pump
,”
Ind. Lubr. Tribol.
,
61
(
3
), pp.
173
178
.
15.
Wu
,
H.
,
Zhao
,
L.
,
Ni
,
S.
, and
He
,
Y.
,
2020
, “
Study on Friction Performance and Mechanism of Slipper Pair Under Different Paired Materials in High-Pressure Axial Piston Pump
,”
Friction
,
8
(
5
), pp.
957
969
.
16.
Tang
,
H.
,
Ren
,
Y.
, and
Zhang
,
X.
,
2020
, “
Tribological Performance of MoS2 Coating on Slipper Pair in Axial Piston Pump
,”
J. Cent. South Univ.
,
27
(
5
), pp.
1515
1529
.
17.
Nie
,
S.
,
Lou
,
F.
,
Ji
,
H.
, and
Yin
,
F.
,
2019
, “
Tribological Performance of CF-PEEK Sliding Against 17-4PH Stainless Steel With Various Cermet Coatings for Water Hydraulic Piston Pump Application
,”
Coatings
,
9
(
7
), p.
436
.
18.
Bergada
,
J.
,
Kumar
,
S.
,
Davies
,
D.
, and
Watton
,
J.
,
2012
, “
A Complete Analysis of Axial Piston Pump Leakage and Output Flow Ripples
,”
Appl. Math. Model.
,
36
(
4
), pp.
1731
1751
.
19.
Chao
,
Q.
,
Shao
,
Y.
,
Liu
,
C.
, and
Zhao
,
J.
,
2023
, “
New Analytical Leakage Models for Tribological Interfaces in Axial Piston Pumps
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
237
(
19
), pp.
4581
4592
.
20.
Meng
,
X.
,
Ge
,
C.
,
Liang
,
H.
,
Lu
,
X.
, and
Ma
,
X.
,
2021
, “
Lubrication Characteristics of the Slipper–Swash-Plate Interface in a Swash-Plate-Type Axial Piston Pump
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
235
(
4
), pp.
639
651
.
21.
Zhao
,
K.
,
He
,
T.
,
Wang
,
C.
,
Chen
,
Q.
, and
Li
,
Z.
,
2022
, “
Lubrication Characteristics Analysis of Slipper Pair of Digital Valve Distribution Axial Piston Pump
,”
Adv. Mech. Eng.
,
14
(
3
), pp.
1
15
.
22.
Zhang
,
X.
,
Wu
,
H.
,
Chen
,
C.
,
Wang
,
D.
, and
Li
,
S.
,
2022
, “
Oil Film Lubrication State Analysis of Piston Pair in Piston Pump Based on Coupling Characteristics of the Fluid Thermal Structure
,”
Eng. Fail. Anal.
,
140
, p.
106521
.
23.
Chao
,
Q.
,
Zhang
,
J.
,
Xu
,
B.
,
Wang
,
Q.
, and
Huang
,
H.
,
2019
, “
Test Rigs and Experimental Studies of the Slipper Bearing in Axial Piston Pumps: A Review
,”
Measurement
,
132
, pp.
135
149
.
24.
Liu
,
S.
,
Zhang
,
Y.
,
Ai
,
C.
,
Ge
,
Y.
,
Li
,
Z.
,
Zhu
,
Y.
, and
Hao
,
M.
,
2023
, “
A New Test Method for Simulating Wear Failure of Hydraulic Pump Slipper Pair Under High-Speed and High-Pressure Conditions
,”
Front. Energy Res.
,
10
, p.
1096633
.
25.
Kumar
,
A.
,
Goenka
,
P.
, and
Booker
,
J.
,
1990
, “
Modal Analysis of Elastohydrodynamic Lubrication: A Connecting Rod Application
,”
ASME J. Tribol.
,
112
(
3
), pp.
524
531
.
26.
Schenk
,
A.
, and
Ivantysynova
,
M.
,
2015
, “
A Transient Thermoelastohydrodynamic Lubrication Model for the Slipper/Swashplate in Axial Piston Machines
,”
ASME J. Tribol.
,
137
(
3
), p.
031701
.
27.
Xu
,
B.
,
Zhang
,
J.
,
Yang
,
H.
, and
Zhang
,
B.
,
2013
, “
Investigation on the Radial Micro-motion About Piston of Axial Piston Pump
,”
Chin. J. Mech. Eng.
,
26
(
2
), pp.
325
333
.
28.
Zhang
,
J.
,
Qun
,
C.
, and
Xu
,
B.
,
2018
, “
Analysis of the Cylinder Block Tilting Inertia Moment and Its Effect on the Performance of High-Speed Electro-hydrostatic Actuator Pumps of Aircraft
,”
Chin. J. Aeronaut.
,
31
(
1
), pp.
169
177
.
29.
Hashemi
,
S.
,
Friedrich
,
H.
,
Bobach
,
L.
, and
Bartel
,
D.
,
2017
, “
Validation of a Thermal Elastohydrodynamic Multibody Dynamics Model of the Slipper Pad by Friction Force Measurement in the Axial Piston Pump
,”
Tribol. Int.
,
115
, pp.
319
337
.
30.
Jiang
,
J.
,
Yan
,
W.
, and
Li
,
Q.
,
2020
, “
Analysis on Micro-motion of Cylinder Block Based on Elasto-hydrodynamic Lubrication
,”
Ind. Lubr. Tribol.
,
72
(
5
), pp.
645
650
.
31.
Tang
,
H.
,
Ren
,
Y.
, and
Kumar
,
A.
,
2021
, “
Optimization Tool Based on Multi-objective Adaptive Surrogate Modeling for Surface Texture Design of Slipper Bearing in Axial Piston Pump
,”
Alexandria Eng. J.
,
60
(
5
), pp.
4483
4503
.
32.
Chen
,
L.
,
Shang
,
L.
,
Liu
,
Z.
,
Mukherjee
,
S.
,
Cai
,
Y.
, and
Wang
,
B.
,
2023
, “
Effects of Chevron Micro-textures on Tribological and Lubricating Performance of Cylinder Block/Valve Plate Interface in Axial Piston Pumps
,”
ASME J. Tribol.
,
145
(
3
), p.
032201
.
33.
Halling
,
J.
,
1978
,
Principles of Tribology
,
McMillan Press Ltd.
,
London
.
34.
Shi
,
C.
,
Wang
,
S.
,
Wang
,
X.
, and
Shi
,
J.
,
2021
, “
Wear Modelling of Slipper/Swashplate Pair for Highspeed Piston Pump Under Transient Lubrication Conditions
,”
2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)
,
Chengdu
,
Aug. 1–4
, pp.
2124
2129
.
35.
Schuhler
,
G.
,
Jourani
,
A.
,
Bouvier
,
S.
, and
Perrochat
,
J. M.
,
2018
, “
Wear Mechanisms in Contacts Involving Slippers in Axial Piston Pumps: A Multi-technical Analysis
,”
J. Mater. Eng. Perform.
,
27
(
10
), pp.
5395
5405
.
36.
Ivantysyn
,
R.
,
Shorbagy
,
A.
, and
Weber
,
J.
,
2020
, “
Investigation of the Wear Behavior of the Slipper in an Axial Piston Pump by Means of Simulation and Measurement
,”
Proceedings of the 12th International Fluid Power Conference
,
Dresden, Germany
,
Oct. 12–14
, pp.
315
326
.
37.
Zhang
,
J.
,
Lyu
,
F.
,
Xu
,
B.
,
Huang
,
W.
,
Wu
,
W.
,
Guo
,
Z.
,
Xu
,
H.
, and
Huang
,
X.
,
2021
, “
Simulation and Experimental Investigation on Low Wear Rate Surface Contour of Piston/Cylinder Pair in an Axial Piston Pump
,”
Tribol. Int.
,
162
, p.
107127
.
38.
Schenk
,
A.
,
2014
, “
Predicting Lubrication Performance Between the Slipper and Swashplate in Axial Piston Hydraulic Machines
,”
Ph.D. thesis
,
Purdue University
,
West Lafayette, IN
. https://docs.lib.purdue.edu/open_access_dissertations/359/
39.
Chao
,
Q.
,
Zhang
,
J.
,
Xu
,
B.
, and
Wang
,
Q.
,
2018
, “
Discussion on the Reynolds Equation for the Slipper Bearing Modeling in Axial Piston Pumps
,”
Tribol. Int.
,
118
, pp.
140
147
.
40.
Christensen
,
H.
,
1970
, “
Elastohydrodynamic Theory of Spherical Bodies in Normal Approach
,”
ASME J. Tribol.
,
92
(
1
), pp.
145
153
.
41.
Ali
,
H. H.
,
Wisch
,
J. K.
,
Fales
,
R. C.
, and
Manring
,
N. D.
,
2019
, “
Efficiency of a Fixed Displacement Pump With Flow Control Using an Inlet Metering Valve
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
3
), p.
031001
.
42.
Greenwood
,
J.
, and
Williamson
,
J.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. Lond. A
,
295
(
1442
), pp.
300
319
.
43.
Han
,
B.
,
Wang
,
Z.
,
Ji
,
H.
,
Sun
,
L.
, and
Lu
,
Y.
,
2024
, “
Analysis of Friction Characteristics of Valve Plate Pair in an Axial Piston Pump Considering Cylinder Block Dynamics
,”
ASME J. Tribol.
,
146
(
4
), p.
041702
.
44.
Zou
,
Q.
,
Huang
,
P.
, and
When
,
S. Z.
,
1996
, “
Abrasive Wear Model for Lubricated Sliding Contacts
,”
Wear
,
196
(
1–2
), pp.
72
76
.
45.
Zhou
,
J.
,
Zhou
,
J.
, and
Jing
,
C.
,
2020
, “
Experimental Research on the Dynamic Lubricating Performance of Slipper/Swash Plate Interface in Axial Piston Pumps
,”
Chin. J. Mech. Eng.
,
33
(
1
), pp.
1
7
.
46.
Ye
,
S.
,
Tang
,
H.
,
Ren
,
Y.
, and
Xiang
,
J.
,
2020
, “
Study on the Load-Carrying Capacity of Surface Textured Slipper Bearing of Axial Piston Pump
,”
Appl. Math. Model.
,
77
, pp.
554
584
.
47.
Ransegnola
,
T.
,
Shang
,
L.
, and
Vacca
,
A.
,
2022
, “
A Study of Piston and Slipper Spin in Swashplate Type Axial Piston Machines
,”
Tribol. Int.
,
167
, p.
107420
.
You do not currently have access to this content.