Abstract

This study focuses on environmentally responsible and sustainable manufacturing, where heat removal is critical. Various cooling and lubrication technologies are employed in manufacturing strategies, and although minimum quantity lubrication (MQL) systems are advantageous, they are not widely adopted in the industry. Recently, cutting fluids reinforced with nanoparticles has gained attention. The study investigates the machinability of Ti gr. 2 alloys with different cutting parameters and lubrication/cooling systems. Cutting fluids are essential in heat removal and irregularity prevention, reducing friction in the cutting zone, lowering cutting forces and vibrations, and improving tribological conditions during machining operations. Cutting forces increase with the cut and feed rate depth, resulting in higher energy consumption. With increasing feed rate, surface quality decreases, but MQL and NMQL (nanoparticle-reinforced MQL) perform better than dry machining. Scanning electron microscope (SEM) images indicate that cutting tools in dry environments experience more flank wear, whereas MQL and NMQL result in crater wear. High feed rates in MQL/NMQL environments cause sudden and fractured chip formation, which affects worker safety and health. Ti gr. 2 alloys have potential applications in various industrial components, and the NMQL, MQL, and dry systems used in the study are non-hazardous and environmentally friendly.

References

1.
Philip
,
J. T.
,
Kumar
,
D.
,
Mathew
,
J.
, and
Kuriachen
,
B.
,
2020
, “
Experimental Investigations on the Tribological Performance of Electric Discharge Alloyed Ti–6Al–4V at 200–600 °C
,”
ASME J. Tribol.
,
142
(
6
), p.
061702
.
2.
Agrawal
,
C.
,
Wadhwa
,
J.
,
Pitroda
,
A.
,
Pruncu
,
C. I.
,
Sarikaya
,
M.
, and
Khanna
,
N.
,
2021
, “
Comprehensive Analysis of Tool Wear, Tool Life, Surface Roughness, Costing and Carbon Emissions in Turning Ti–6Al–4V Titanium Alloy: Cryogenic Versus Wet Machining
,”
Tribol. Int.
,
153
, p.
106597
.
3.
Cagan
,
S. C.
, and
Buldum
,
B. B.
,
2017
, “
Investigation of the Effect of Minimum Quantity Lubrication (MQL) on the Machining of Titanium and Its Alloys: A Review
,”
Int. J. Mech. Prod. Eng. Res. Dev.
,
7
(
6
), pp.
453
462
.
4.
Chaurasiya
,
S.
, and
Singh
,
G.
,
2023
, “
Sustainability Assessment Comparison of Cutting Fluid for Turning of Titanium Alloy Grade II
,”
Process Integr. Optim. Sustain.
,
7
(
4
), pp.
805
811
.
5.
García-Martínez
,
E.
,
Miguel
,
V.
,
Martínez-Martínez
,
A.
,
Manjabacas
,
M. C.
, and
Coello
,
J.
,
2019
, “
Sustainable Lubrication Methods for the Machining of Titanium Alloys: An Overview
,”
Materials
,
12
(
23
), p.
3852
.
6.
Wickramasinghe
,
K.
,
Sasahara
,
H.
,
Abd Rahim
,
E.
, and
Perera
,
G.
,
2021
, “
Recent Advances on High-Performance Machining of Aerospace Materials and Composites Using Vegetable Oil-Based Metal Working Fluids
,”
J. Cleaner Prod.
,
310
, p.
127459
.
7.
Pimenov
,
D. Y.
,
Mia
,
M.
,
Gupta
,
M. K.
,
Machado
,
Á. R.
,
Pintaude
,
G.
,
Unune
,
D. R.
,
Khanna
,
N.
, et al
,
2022
, “
Resource Saving by Optimization and Machining Environments for Sustainable Manufacturing: A Review and Future Prospects
,”
Renew. Sustain. Energy Rev.
,
166
, p.
112660
.
8.
Osman
,
K. A.
,
Ünver
,
H. Ö.
, and
Şeker
,
U.
,
2019
, “
Application of Minimum Quantity Lubrication Techniques in Machining Process of Titanium Alloy for Sustainability: A Review
,”
Int. J. Adv. Manuf. Technol.
,
100
(
9–12
), pp.
2311
2332
.
9.
Tock
,
A.
,
Gandhi
,
R.
,
Saldana
,
C.
, and
Iglesias
,
P.
,
2018
, “
Tribological Performance of Textured Surfaces Created by Modulation-Assisted Machining
,”
ASME J. Tribol.
,
140
(
6
), p.
061704
.
10.
Gupta
,
M. K.
,
Jamil
,
M.
,
Wang
,
X.
,
Song
,
Q.
,
Liu
,
Z.
,
Mia
,
M.
,
Hegab
,
H.
, et al
,
2019
, “
Performance Evaluation of Vegetable Oil-Based Nano-cutting Fluids in Environmentally Friendly Machining of Inconel-800 Alloy
,”
Materials
,
12
(
17
), p.
2792
.
11.
Reddy
,
B. S.
,
Murugasen
,
P. K.
, and
Sivalingam
,
V.
,
2023
, “
Machinability Studies on Commercially Pure Titanium (Grade-2) Under Cryogenic Condition
,”
Mater. Manuf. Process.
,
38
(
12
), pp.
1463
1471
.
12.
Gupta
,
K.
,
2020
, “
A Review on Green Machining Techniques
,”
Procedia Manuf.
,
51
, pp.
1730
1736
.
13.
Pimenov
,
D. Y.
,
Mia
,
M.
,
Gupta
,
M. K.
,
Machado
,
A. R.
,
Tomaz
,
Í. V.
,
Sarikaya
,
M.
,
Wojciechowski
,
S.
,
Mikolajczyk
,
T.
, and
Kapłonek
,
W.
,
2021
, “
Improvement of Machinability of Ti and Its Alloys Using Cooling-Lubrication Techniques: A Review and Future Prospect
,”
J. Mater. Res. Technol.
,
11
, pp.
719
753
.
14.
Sujith
,
S. V.
, and
Mulik
,
S.
,
2022
, “
Surface Integrity and Flank Wear Response Under Pure Coconut Oil–Al2O3 Nano Minimum Quantity Lubrication Turning of Al-7079/7 wt%-TiC In Situ Metal Matrix Composites
,”
ASME J. Tribol.
,
144
(
5
), p.
051701
.
15.
Ronoh
,
K.
,
Mwema
,
F.
,
Dabees
,
S.
, and
Sobola
,
D.
,
2022
, “
Advances in Sustainable Grinding of Different Types of the Titanium Biomaterials for Medical Applications: A Review
,”
Biomed. Eng. Adv.
,
4
, p.
100047.
16.
Cagan
,
S. C.
,
Tasci
,
U.
,
Pruncu
,
C. I.
, and
Bostan
,
B.
,
2023
, “
Investigation of the Effects of Eco-friendly MQL System to Improve the Mechanical Performance of WE43 Magnesium Alloys by the Burnishing Process
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
1
), p.
22
.
17.
Khan
,
A.
, and
Maity
,
K.
,
2018
, “
Influence of Cutting Speed and Cooling Method on the Machinability of Commercially Pure Titanium (CP-Ti) Grade II
,”
J. Manuf. Process.
,
31
, pp.
650
661
.
18.
Singh
,
G.
,
Pruncu
,
C. I.
,
Gupta
,
M. K.
,
Mia
,
M.
,
Khan
,
A. M.
,
Jamil
,
M.
,
Pimenov
,
D. Y.
,
Sen
,
B.
, and
Sharma
,
V. S.
,
2019
, “
Investigations of Machining Characteristics in the Upgraded MQL-Assisted Turning of Pure Titanium Alloys Using Evolutionary Algorithms
,”
Materials
,
12
(
6
), p.
999
.
19.
Gupta
,
M. K.
,
Song
,
Q.
,
Liu
,
Z.
,
Sarikaya
,
M.
,
Jamil
,
M.
,
Mia
,
M.
,
Kushvaha
,
V.
,
Singla
,
A. K.
, and
Li
,
Z.
,
2020
, “
Ecological, Economical and Technological Perspectives Based Sustainability Assessment in Hybrid-Cooling Assisted Machining of Ti-6Al-4V Alloy
,”
Sustain. Mater. Technol.
,
26
, p.
e00218
.
20.
Gupta
,
M. K.
,
Sood
,
P. K.
,
Singh
,
G.
, and
Sharma
,
V. S.
,
2017
, “
Sustainable Machining of Aerospace Material–Ti (Grade-2) Alloy: Modeling and Optimization
,”
J. Cleaner Prod.
,
147
, pp.
614
627
.
21.
Gupta
,
M. K.
,
Sood
,
P.
, and
Sharma
,
V. S.
,
2016
, “
Machining Parameters Optimization of Titanium Alloy Using Response Surface Methodology and Particle Swarm Optimization Under Minimum-Quantity Lubrication Environment
,”
Mater. Manuf. Process.
,
31
(
13
), pp.
1671
1682
.
22.
Davis
,
B.
,
Schueller
,
J. K.
, and
Huang
,
Y.
,
2015
, “
Study of Ionic Liquid as Effective Additive for Minimum Quantity Lubrication During Titanium Machining
,”
Manuf. Lett.
,
5
, pp.
1
6
.
23.
Bagherzadeh
,
A.
, and
Budak
,
E.
,
2018
, “
Investigation of Machinability in Turning of Difficult-to-Cut Materials Using a New Cryogenic Cooling Approach
,”
Tribol. Int.
,
119
, pp.
510
520
.
24.
Jawahir
,
I.
,
Attia
,
H.
,
Biermann
,
D.
,
Duflou
,
J.
,
Klocke
,
F.
,
Meyer
,
D.
,
Newman
,
S.
, et al
,
2016
, “
Cryogenic Manufacturing Processes
,”
CIRP Ann.
,
65
(
2
), pp.
713
736
.
25.
Kishawy
,
H. A.
, and
Hosseini
,
A.
,
2019
, 2019, “Machining Difficult-to-Cut Materials,”
Materials Forming, Machining and Tribology
,
Springer
,
Cham
.
26.
dos Santos
A. J.
,
Bonfim
,
M. T.
,
Rosa Ribeiro da Silva
,
L.
,
Batista da Silva
,
R.
,
Câmara
,
M. A.
,
Magalhães
,
F. D.
, and
Abrão
,
A. M.
,
2023
, “
Determination of the Chip–Tool Contact Length in Orthogonal Cutting
,”
ASME J. Tribol.
,
145
(
1
), p.
011502
.
27.
Valiente-Blanco
,
I.
,
Perez-Diaz
,
J. L.
,
Perez-del-Alamo
,
J. L.
, and
Diez-Jimenez
,
E.
,
2020
, “
Temperature Dependence of the Friction Coefficient of Grease-Lubricated PTFE Linear Bushings Against Titanium Grade 5 Alloy (Ti6Al4V) and Life Tests Operating at High-Speed
,”
ASME J. Tribol.
,
142
(
9
), p.
091701
.
28.
Kaur
,
M.
, and
Singh
,
K.
,
2019
, “
Review on Titanium and Titanium Based Alloys as Biomaterials for Orthopaedic Applications
,”
Mater. Sci. Eng. C
,
102
, pp.
844
862
.
29.
Cagan
,
S. C.
, and
Buldum
,
B. B.
,
2023
, “
A Green Machining Study to Investigate the Effect of Nano-cutting Fluid Environments on the Machinability of Ti6Al4V Titanium Alloy
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
237
(
9
), pp.
1841
1853
.
30.
Harhout
,
R.
,
Gaceb
,
M.
,
Haddad
,
S.
,
Aguib
,
S.
,
Bloul
,
B.
, and
Guebli
,
A.
,
2020
, “
Predictive Modelling and Optimisation of Surface Roughness in Turning of AISI 1050 Steel Using Polynomial Regression
,”
Manuf. Technol.
,
20
(
5
), pp.
591
602
.
31.
Jha
,
H.
,
Panpalia
,
A.
,
Suneja
,
D.
,
Ashpilya
,
G.
,
Kumar
,
H.
, and
Gautam
,
V.
,
2022
, “
Estimation of Surface Roughness in Turning Operations Using Multivariate Polynomial Regression
,”
2nd International Conference on Future Learning Aspects of Mechanical Engineering
,
Uttar Pradesh, India
,
Aug. 5–7
, Springer, pp.
947
957
.
You do not currently have access to this content.