Abstract

Nowadays, mixing nanoparticles into cutting fluids is much more common to improve lubrication and cooling properties. Many studies have been carried out in the past to assess the machining performance using nanofluids. However, limited studies are based on hybrid nanoparticles. This work estimates TC4 alloy machining performance using a hybrid nanofluid. The minimum quantity lubrication (MQL) cooling technique is employed here to investigate machinability. The machining performance of TC4 alloy is estimated by taking surface roughness and cutting temperature as response parameters. Hybrid nanofluid is formed by adding nanoparticles of graphene into alumina (Al2O3) based nanofluid in a fixed volumetric proportion (20:80) and as base fluid, soybean oil is used. In addition, machining performance is investigated in terms of thermophysical properties by taking weight percent of concentrations of nanoparticles as 0.25, 0.50, 0.75, and 1.00, respectively. Significant improvements are observed in thermophysical properties with the hybridization of Al2O3 and graphene (Al2O3–GnP). Experimentation and parametric optimization are carried out using Taguchi's method. Controlling factors of hybrid nanofluid of alumina–graphene and monotype nanofluid of alumina are compared. The obtained results show that these parameters significantly reduce using hybrid nanofluid.

References

1.
Grzesik
,
W.
,
Niesłony
,
P.
,
Habrat
,
W.
,
Sieniawski
,
J.
, and
Laskowski
,
P.
,
2018
, “
Investigation of Tool Wear in the Turning of Inconel 718 Superalloy in Terms of Process Performance and Productivity Enhancement
,”
Tribol. Int.
,
118
, pp.
337
346
.
2.
Krolczyk
,
G. M.
,
Nieslony
,
P.
,
Maruda
,
R. W.
, and
Wojciechowski
,
S.
,
2017
, “
Dry Cutting Effect in Turning of a Duplex Stainless Steel as a Key Factor in Clean Production
,”
J. Clean. Prod.
,
142
, pp.
3343
3354
.
3.
Diniz
,
A. E.
, and
De Oliveira
,
A. J.
,
2004
, “
Optimizing the Use of Dry Cutting in Rough Turning Steel Operations
,”
Int. J. Mach. Tools Manuf.
,
44
(
10
), pp.
1061
1067
.
4.
Vasu
,
V.
, and
Reddy
,
G. P. K.
,
2012
, “
Effect of Minimum Quantity Lubrication With Al2O3 Nanoparticles on Surface Roughness, Tool Wear and Temperature Dissipation in Machining Inconel 600 Alloy
,”
Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst.
,
225
(
1
), pp.
3
15
.
5.
Padmini
,
R.
,
Vamsi Krishna
,
P.
, and
Krishna Mohana Rao
,
G.
,
2016
, “
Effectiveness of Vegetable Oil Based Nanofluids as Potential Cutting Fluids in Turning AISI 1040 Steel
,”
Tribol. Int.
,
94
, pp.
490
501
.
6.
Khan
,
M. M. A.
,
Mithu
,
M. A. H.
, and
Dhar
,
N. R.
,
2009
, “
Effects of Minimum Quantity Lubrication on Turning AISI 9310 Alloy Steel Using Vegetable Oil-Based Cutting Fluid
,”
J. Mater. Process. Technol.
,
209
(
15–16
), pp.
5573
5583
.
7.
Gupta
,
M. K.
,
Demirsöz
,
R.
,
Korkmaz
,
M. E.
, and
Ross
,
N. S.
,
2023
, “
Wear and Friction Mechanism of Stainless Steel 420 Under Various Lubrication Conditions: A Tribological Assessment With Ball on Flat Test
,”
ASME J. Tribol.
,
145
(
4
), p.
041703
.
8.
Maruda
,
R. W.
,
Krolczyk
,
G. M.
,
Feldshtein
,
E.
,
Nieslony
,
P.
,
Tyliszczak
,
B.
, and
Pusavec
,
F.
,
2017
, “
Tool Wear Characterizations in Finish Turning of AISI 1045 Carbon Steel for MQCL Conditions
,”
Wear
,
372–373
, pp.
54
67
.
9.
Maruda
,
R. W.
,
Feldshtein
,
E. E.
,
Legutko
,
S.
, and
Królczyk
,
G. M.
,
2015
, “
Improving the Efficiency of Running-in for a Bronze–Stainless Steel Friction Pair
,”
J. Frict. Wear
,
36
(
6
), pp.
548
553
.
10.
Behera
,
B. C.
,
Ghosh
,
S.
, and
Rao
,
P. V.
,
2018
, “
Modeling of Cutting Force in MQL Machining Environment Considering Chip Tool Contact Friction
,”
Tribol. Int.
,
117
, pp.
283
295
.
11.
Kishawy
,
H. A.
,
Dumitrescu
,
M.
,
Ng
,
E. G.
, and
Elbestawi
,
M. A.
,
2005
, “
Effect of Coolant Strategy on Tool Performance, Chip Morphology and Surface Quality During High-Speed Machining of A356 Aluminum Alloy
,”
Int. J. Mach. Tools Manuf.
,
45
(
2
), pp.
219
227
.
12.
Singh
,
R. K.
,
Dixit
,
A. R.
,
Mandal
,
A.
, and
Sharma
,
A. K.
,
2017
, “
Emerging Application of Nanoparticle-Enriched Cutting Fluid in Metal Removal Processes: A Review
,”
J. Brazilian Soc. Mech. Sci. Eng.
,
39
(
11
), pp.
4677
4717
.
13.
Ganguli
,
S.
, and
Kapoor
,
S. G.
,
2016
, “
Improving the Performance of Milling of Titanium Alloys Using the Atomization-Based Cutting Fluid Application System
,”
J. Manuf. Process.
,
23
, pp.
29
36
.
14.
Srikant
,
R. R.
,
Prasad
,
M. M. S.
,
Amrita
,
M.
,
Sitaramaraju
,
A. V.
, and
Krishna
,
P. V.
,
2014
, “
Nanofluids as a Potential Solution for Minimum Quantity Lubrication: A Review
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
228
(
1
), pp.
3
20
.
15.
Salimi-Yasar
,
H.
,
Zeinali Heris
,
S.
, and
Shanbedi
,
M.
,
2017
, “
Influence of Soluble Oil-Based TiO2 Nanofluid on Heat Transfer Performance of Cutting Fluid
,”
Tribol. Int.
,
112
, pp.
147
154
.
16.
Sen Gupta
,
S.
,
Manoj Siva
,
V.
,
Krishnan
,
S.
,
Sreeprasad
,
T. S.
,
Singh
,
P. K.
,
Pradeep
,
T.
, and
Das
,
S. K.
,
2011
, “
Thermal Conductivity Enhancement of Nanofluids Containing Graphene Nanosheets
,”
J. Appl. Phys.
,
110
(
8
), p.
084302
.
17.
Hemmat Esfe
,
M.
,
Karimipour
,
A.
,
Yan
,
W. M.
,
Akbari
,
M.
,
Safaei
,
M. R.
, and
Dahari
,
M.
,
2015
, “
Experimental Study on Thermal Conductivity of Ethylene Glycol Based Nanofluids Containing Al2O3 Nanoparticles
,”
Int. J. Heat Mass Transfer
,
88
, pp.
728
734
.
18.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
,
2001
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
(
14
), pp.
2252
2254
.
19.
Roy
,
S.
, and
Ghosh
,
A.
,
2014
, “
High-Speed Turning of AISI 4140 Steel by Multi-layered TiN Top-Coated Insert With Minimum Quantity Lubrication Technology and Assessment of Near Tool-Tip Temperature Using Infrared Thermography
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
228
(
9
), pp.
1058
1067
.
20.
Saravanakumar
,
N.
,
Prabu
,
L.
,
Karthik
,
M.
, and
Rajamanickam
,
A.
,
2014
, “
Experimental Analysis on Cutting Fluid Dispersed With Silver Nano Particles
,”
J. Mech. Sci. Technol.
,
28
(
2
), pp.
645
651
.
21.
Li
,
M.
,
Yu
,
T.
,
Yang
,
L.
,
Li
,
H.
,
Zhang
,
R.
, and
Wang
,
W.
,
2019
, “
Parameter Optimization During Minimum Quantity Lubrication Milling of TC4 Alloy With Graphene-Dispersed Vegetable-Oil-Based Cutting Fluid
,”
J. Clean. Prod.
,
209
, pp.
1508
1522
.
22.
Korkmaz
,
S.
,
Cetin
,
M. H.
,
Dogan
,
S.
,
Ozen
,
K.
,
Ayhan
,
E.
,
Ozgul
,
M.
, and
Ozdemir
,
S. F.
,
2020
, “
A Comprehensive Investigation on Tribological Performance of Nano-Silver and Nano-Gold Additivated Fluids on Wearing Surfaces
,”
ASME J. Tribol.
,
142
(
8
), p.
082101
.
23.
Amrita
,
M.
,
Srikant
,
R. R.
, and
Sitaramaraju
,
A. V.
,
2014
, “
Performance Evaluation of Nanographite-Based Cutting Fluid in Machining Process
,”
Mater. Manuf. Process.
,
29
(
5
), pp.
600
605
.
24.
Padmini
,
R.
,
Vamsi Krishna
,
P.
, and
Krishna Mohana Rao
,
G.
,
2016
, “
Experimental Evaluation of Nano-Molybdenum Disulphide and Nano-Boric Acid Suspensions in Vegetable Oils as Prospective Cutting Fluids During Turning of AISI 1040 Steel
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
230
(
5
), pp.
493
505
.
25.
Songmei
,
Y.
,
Xuebo
,
H.
,
Guangyuan
,
Z.
, and
Amin
,
M.
,
2017
, “
A Novel Approach of Applying Copper Nanoparticles in Minimum Quantity Lubrication for Milling of Ti-6Al-4 V
,”
Adv. Prod. Eng. Manag.
,
12
(
2
), pp.
139
150
.
26.
Nine
,
M. J.
,
Batmunkh
,
M.
,
Kim
,
J. H.
,
Chung
,
H. S.
, and
Jeong
,
H. M.
,
2012
, “
Investigation of Al2O3-MWCNTs Hybrid Dispersion in Water and Their Thermal Characterization
,”
J. Nanosci. Nanotechnol.
,
12
(
6
), pp.
4553
4559
.
27.
Gaurav
,
G.
,
Sharma
,
A.
,
Dangayach
,
G. S.
, and
Meena
,
M. L.
,
2020
, “
Assessment of Jojoba as a Pure and Nano-Fluid Base Oil in Minimum Quantity Lubrication (MQL) Hard-Turning of Ti–6Al–4V: A Step Towards Sustainable Machining
,”
J. Clean. Prod.
,
272
, p.
122553
.
28.
Hegab
,
H.
,
Kishawy
,
H. A.
,
Gadallah
,
M. H.
,
Umer
,
U.
, and
Deiab
,
I.
,
2018
, “
On Machining of Ti-6Al-4 V Using Multi-walled Carbon Nanotubes-Based Nano-Fluid Under Minimum Quantity Lubrication
,”
Int. J. Adv. Manuf. Technol.
,
97
(
5–8
), pp.
1593
1603
.
29.
Sujith
,
S. V.
, and
Mulik
,
R. S.
,
2022
, “
Surface Integrity and Flank Wear Response Under Pure Coconut Oil-Al2O3 Nano Minimum Quantity Lubrication Turning of Al-7079/7 wt%-TiC In Situ Metal Matrix Composites
,”
ASME J. Tribol.
,
144
(
5
), p.
051701
.
30.
Thakre
,
A. A.
,
Shinde
,
A.
, and
Mundhe
,
G.
,
2016
, “
Improvement in Boundary Lubrication Characteristics of SAE20W40 Oil Using Aluminum Oxide Nanoparticles
,”
ASME J. Tribol.
,
138
(
3
), pp.
138
141
.
31.
Taheri
,
R.
,
Kosasih
,
B.
, and
Zhu
,
H.
,
2022
, “
TiO2–SiO2 Nanoparticle-Stabilized Soybean Oil-in-Water Emulsions: Dispersion Stability, Rolling Lubrication Performance, and Surface Self-Cleaning Effects
,”
ASME J. Tribol.
,
144
(
9
), p.
091901
.
32.
Jamil
,
M.
,
Khan
,
A. M.
,
Hegab
,
H.
,
Gong
,
L.
,
Mia
,
M.
,
Gupta
,
M. K.
, and
He
,
N.
,
2019
, “
Effects of Hybrid Al2O3-CNT Nanofluids and Cryogenic Cooling on Machining of Ti–6Al–4 V
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9–12
), pp.
3895
3909
.
33.
Sharma
,
A. K.
,
Singh
,
R. K.
,
Dixit
,
A. R.
, and
Tiwari
,
A. K.
,
2017
, “
Novel Uses of Alumina-MoS2 Hybrid Nanoparticle Enriched Cutting Fluid in Hard Turning of AISI 304 Steel
,”
J. Manuf. Process.
,
30
, pp.
467
482
.
34.
Sarkar
,
J.
,
Ghosh
,
P.
, and
Adil
,
A.
,
2015
, “
A Review on Hybrid Nanofluids: Recent Research, Development and Applications
,”
Renew. Sustain. Energy Rev.
,
43
, pp.
164
177
.
35.
Suresh
,
S.
,
Venkitaraj
,
K. P.
, and
Selvakumar
,
P.
,
2011
, “
Synthesis, Characterisation of Al2O3-Cu Nano Composite Powder and Water Based Nanofluids
,”
Adv. Mater. Res.
,
328–330
, pp.
1560
1567
.
36.
Tanshen
,
M. R.
,
Lee
,
S.
,
Kim
,
J.
,
Kang
,
D.
,
Noh
,
J.
,
Chung
,
H.
,
Jeong
,
H.
, and
Huh
,
S.
,
2014
, “
Pressure Distribution Inside Oscillating Heat Pipe Charged With Aqueous Al2O3 Nanoparticles, MWCNTs and Their Hybrid
,”
J. Cent. South Univ.
,
21
(
6
), pp.
2341
2348
.
37.
Zhang
,
X.
,
Li
,
C.
,
Zhang
,
Y.
,
Jia
,
D.
,
Li
,
B.
,
Wang
,
Y.
,
Yang
,
M.
,
Hou
,
Y.
, and
Zhang
,
X.
,
2016
, “
Performances of Al2O3/SiC Hybrid Nanofluids in Minimum-Quantity Lubrication Grinding
,”
Int. J. Adv. Manuf. Technol.
,
86
(
9–12
), pp.
3427
3441
.
38.
Zhang
,
Y.
,
Li
,
C.
,
Jia
,
D.
,
Zhang
,
D.
, and
Zhang
,
X.
,
2015
, “
Experimental Evaluation of the Lubrication Performance of MoS2/CNT Nanofluid for Minimal Quantity Lubrication in Ni-Based Alloy Grinding
,”
Int. J. Mach. Tools Manuf.
,
99
, pp.
19
33
.
39.
Ahammed
,
N.
,
Asirvatham
,
L. G.
, and
Wongwises
,
S.
,
2016
, “
Entropy Generation Analysis of Graphene–Alumina Hybrid Nanofluid in Multiport Minichannel Heat Exchanger Coupled With Thermoelectric Cooler
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1084
1097
.
40.
Abbasi
,
S. M.
,
Rashidi
,
A.
,
Nemati
,
A.
, and
Arzani
,
K.
,
2013
, “
The Effect of Functionalisation Method on the Stability and the Thermal Conductivity of Nanofluid Hybrids of Carbon Nanotubes/Gamma Alumina
,”
Ceram. Int.
,
39
(
4
), pp.
3885
3891
.
41.
Kanthavel
,
K.
,
Sumesh
,
K. R.
, and
Saravanakumar
,
P.
,
2016
, “
Study of Tribological Properties on Al/Al2O3/MoS2 Hybrid Composite Processed by Powder Metallurgy
,”
Alexandria Eng. J.
,
55
(
1
), pp.
13
17
.
42.
Ghani
,
J. A.
,
Che Haron
,
C. H.
,
Hamdan
,
S. H.
,
Md Said
,
A. Y.
, and
Tomadi
,
S. H.
,
2013
, “
Failure Mode Analysis of Carbide Cutting Tools Used for Machining Titanium Alloy
,”
Ceram. Int.
,
39
(
4
), pp.
4449
4456
.
43.
Wanatasanappan
,
V. V.
,
Rezman
,
M.
, and
Abdullah
,
M. Z.
,
2022
, “
Thermophysical Properties of Vegetable Oil-Based Hybrid Nanofluids Containing Al2O3-TiO2 Nanoparticles as Insulation Oil for Power Transformers
,”
Nanomaterials
,
12
(
20
), p.
3621
.
44.
Shuoran
,
D.
,
Marouen
,
H.
, and
Sue
,
H. J.
,
2020
, “
Experimental and FEM Analysis of Mar Behavior on Amorphous Polymers
,”
Wear
,
444
, p.
203155
.
45.
Shuoran
,
D.
,
Marouen
,
H.
, and
Sue
,
H. J.
,
2020
, “
Finite Element Modeling on Barrel Mar Behavior of Amorphous Polymers
,”
SPE ANTEC 2020: The Annual Technical Conference on Plastic. Professionals
,
Online (Virtual Conference)
,
Mar. 30–May 5
, pp.
363
367
.
46.
Khandekar
,
S.
,
Sankar
,
M. R.
,
Agnihotri
,
V.
, and
Ramkumar
,
J.
,
2012
, “
Nano-Cutting Fluid for Enhancement of Metal Cutting Performance
,”
Mater. Manuf. Process.
,
27
(
9
), pp.
963
967
.
47.
Wasan
,
D.
,
Nikolov
,
A.
, and
Kondiparty
,
K.
,
2011
, “
The Wetting and Spreading of Nanofluids on Solids: Role of the Structural Disjoining Pressure
,”
Curr. Opin. Colloid Interface Sci.
,
16
(
4
), pp.
344
349
.
48.
Molero
,
G.
,
Du
,
S.
,
Mamak
,
M.
,
Agerton
,
M.
,
Hossain
,
M. M.
, and
Sue
,
H.-J.
,
2019
, “
Experimental and Numerical Determination of Adhesive Strength in Semi-Rigid Multi-layer Polymeric Systems
,”
Polym. Test.
,
75
, pp.
85
92
.
49.
Du
,
S.
,
Zhu
,
Z.
,
Liu
,
C.
,
Zhang
,
T.
,
Hossain
,
M. M.
, and
Sue
,
H.-J.
,
2021
, “
Experimental Observation and Finite Element Method Modeling on Scratch-Induced Delamination of Multilayer Polymeric Structures
,”
Polym. Eng. Sci.
,
61
(
6
), pp.
1742
1754
.
50.
Dai
,
W.
,
Kheireddin
,
B.
,
Gao
,
H.
, and
Liang
,
H.
,
2016
, “
Roles of Nanoparticles in Oil Lubrication
,”
Tribol. Int.
,
102
, pp.
88
98
.
51.
Singh
,
R. K.
,
Sharma
,
A. K.
,
Dixit
,
A. R.
,
Tiwari
,
A. K.
,
Pramanik
,
A.
, and
Mandal
,
A.
,
2017
, “
Performance Evaluation of Alumina-Graphene Hybrid Nano-Cutting Fluid in Hard Turning
,”
J. Clean. Prod.
,
162
, pp.
830
845
.
52.
Sadeghinezhad
,
E.
,
Mehrali
,
M.
,
Tahan Latibari
,
S.
,
Mehrali
,
M.
,
Kazi
,
S. N.
,
Oon
,
C. S.
, and
Metselaar
,
H. S. C.
,
2014
, “
Experimental Investigation of Convective Heat Transfer Using Graphene Nanoplatelet Based Nanofluids Under Turbulent Flow Conditions
,”
Ind. Eng. Chem. Res.
,
53
(
31
), pp.
12455
12465
.
53.
Du
,
S.
,
Mullins
,
M.
,
Hamdi
,
M.
, and
Sue
,
H.-J.
,
2020
, “
Quantitative Modeling of Scratch Behavior of Amorphous Polymers at Elevated Temperatures
,”
Polymer (Guildf)
,
197
, p.
122504
.
You do not currently have access to this content.