Abstract

When a metro vehicle navigates a tight curve, it invariably causes a squealing noise. Most researchers proposed the negative friction–velocity slope as the generation mechanism for curve squeal. However, some phenomena of railway curve squeal are still difficult to explain. The purpose of this paper is to establish a friction-coupling finite element model of the wheelset–track system that can accurately predict curve squeal and to examine the influence of different wheelset–track structures on the trend of curve squeal occurrence. It has been proposed that curve squealing is caused by self-excited frictional vibrations. The complex eigenvalue analysis (CEA) and transient dynamics analysis were applied to predict the unstable vibration of curve squeal. The impacts of the coefficient of friction between the rail and the wheel, wheel web plate shape, fastener damping, gauge, and negative friction–velocity slope on the curve squealing noise were studied. The results demonstrated that the predicted frequency corresponded to the main frequency of the squealing noise measured on-site. Simultaneously, a friction coefficient of 0.25 or higher resulted in a curve squeal with a frequency of 2153.9 Hz. An S-shaped web plate wheel, appropriate fastener damping, and gauge can reduce unstable vibrations and curve squealing when a metro vehicle navigates a tight curve. The negative friction–velocity slope has less influence on the tendency of curve squealing.

References

1.
Kropp
,
W.
,
Theyssen
,
J.
, and
Pieringer
,
A.
,
2021
, “
The Application of Dither to Mitigate Curve Squeal
,”
J. Sound Vib.
,
514
, p.
116433
.
2.
Müller
,
B.
, and
Oertli
,
J.
,
2006
, “
Combating Curve Squeal: Monitoring Existing Applications
,”
J. Sound Vib.
,
293
(
3–5
), pp.
728
734
.
3.
Vincent
,
N.
,
Koch
,
J. R.
,
Chollet
,
H.
, and
Guerder
,
J. Y.
,
2006
, “
Curve Squeal of Urban Rolling Stock—Part 1: State of the Art and Field Measurements
,”
J. Sound Vib.
,
293
(
3–5
), pp.
691
700
.
4.
Rudd
,
M. J.
,
1976
, “
Wheel/Rail Noise—Part II: Wheel Squeal
,”
J. Sound Vib.
,
46
(
3
), pp.
381
394
.
5.
Schneider
,
E.
,
Popp
,
K.
, and
Irretier
,
H.
,
1988
, “
Noise Generation in Railway Wheels Due to Rail-Wheel Contact Forces
,”
J. Sound Vib.
,
120
(
2
), pp.
227
244
.
6.
Kraft
,
K.
,
1967
, “
Der einfluß der fahrgeschwindigkeit auf den haftwert zwischen rad und schiene
,”
Archiv für Eisenbahntechnik
,
22
, pp.
58
78
.
7.
Fingberg
,
U.
,
1990
, “
A Model of Wheel-Rail Squealing Noise
,”
J. Sound Vib.
,
143
(
3
), pp.
365
377
.
8.
Périard
,
F.
,
1998
, “
Wheel-Rail Noise Generation: Curve Squealing by Trams
,”
Ph.D. thesis
,
Technische Universiteit Delft
,
Delft, The Netherlands
.
9.
Xie
,
G.
,
Allen
,
P. D.
,
Iwnicki
,
S. D.
,
Alonso
,
A.
,
Thompson
,
D. J.
,
Jones
,
C. J. C.
, and
Huang
,
Z. Y.
,
2006
, “
Introduction of Falling Friction Coefficients Into Curving Calculations for Studying Curve Squeal Noise
,”
Veh. Syst. Dyn.
,
44
(
sup 1
), pp.
261
271
.
10.
Liu
,
X.
, and
Meehan
,
P. A.
,
2015
, “
Wheel Squeal Noise: A Simplified Model to Simulate the Effect of Rolling Speed and Angle of Attack
,”
J. Sound Vib.
,
338
, pp.
184
198
.
11.
Meehan
,
P. A.
, and
Liu
,
X.
,
2017
, “
Modelling and Mitigation of Wheel Squeal Noise Amplitude
,”
J. Sound Vib.
,
413
, pp.
144
158
.
12.
Heckl
,
M. A.
, and
Abrahams
,
I. D.
,
2000
, “
Curve Squeal of Train Wheels, Part 1: Mathematical Model for Its Generation
,”
J. Sound Vib.
,
229
(
3
), pp.
669
693
.
13.
Heckl
,
M. A.
,
2000
, “
Curve Squeal of Train Wheels, Part 2: Which Wheel Modes Are Prone to Squeal?
,”
J. Sound Vib.
,
229
(
3
), pp.
695
707
.
14.
Heckl
,
M. A.
,
2002
, “
Curve Squeal of Train Wheels: Unstable Modes and Limit Cycles
,”
Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci.
,
458
(
2024
), pp.
1949
1965
.
15.
Beer
,
F. D.
,
Janssens
,
M.
,
Kooijman
,
P. P.
, and
Vliet
,
W. J. V.
,
2000
, “
Curve Squeal of Railbound Vehicles (Part 1): Frequency Domain Calculation Model
,”
Proceedings of Internoise
,
Nice, France
,
Aug. 27–30
, Vol. 3, pp.
1560
1563
.
16.
de Beer
,
F. D.
,
Janssens
,
M.
, and
Kooijman
,
P. P.
,
2003
, “
Squeal Noise of Rail-Bound Vehicles Influenced by Lateral Contact Position
,”
J. Sound Vib.
,
267
(
3
), pp.
497
507
.
17.
Kooijman
,
P. P.
,
Vliet
,
W. J. V.
,
Janssens
,
M.
, and
Beer
,
F. D.
,
2000
, “
Curve Squeal of Railbound Vehicles (Part 2): Set-Up for Measurement of Creepage Dependent Friction Coefficient
,”
Proceedings of Internoise
,
Nice, France
,
Aug. 27–30
, Vol. 3, pp.
1564
1567
.
18.
Brunel
,
J. F.
,
Dufrénoy
,
P.
,
Naït
,
M.
,
Muñoz
,
J. L.
, and
Demilly
,
F.
,
2006
, “
Transient Models for Curve Squeal Noise
,”
J. Sound Vib.
,
293
(
3
), pp.
758
765
.
19.
Kwon
,
S.-J.
, and
Kim
,
C.-J.
,
2022
, “
Contribution Analysis of Assembled Brake System to Reduce Squealing
,”
Appl. Sci.
,
12
(
21
), p.
11232
.
20.
Hoffmann
,
N.
, and
Gaui
,
L.
,
2003
, “
Effects of Damping on Mode-Coupling Instability in Friction Induced Oscillations
,”
J. Appl. Math. Mech.
,
83
(
8
), pp.
524
534
.
21.
Kruse
,
S.
, and
Hoffmann
,
N.
,
2010
, “
A Minimal Model to Explore the Influence of Distant Modes on Mode-Coupling Instabilities
,”
AIP Conf. Proc.
,
1281
(
1
), pp.
1411
1414
.
22.
Glocker
,
C.
,
Cataldi-Spinola
,
E.
, and
Leine
,
R. I.
,
2009
, “
Curve Squealing of Trains: Measurement, Modelling and Simulation
,”
J. Sound Vib.
,
324
(
1–2
), pp.
365
386
.
23.
Pieringer
,
A.
,
2014
, “
A Numerical Investigation of Curve Squeal in the Case of Constant Wheel/Rail Friction
,”
J. Sound Vib.
,
333
(
18
), pp.
4295
4313
.
24.
Meehan
,
P. A.
,
2019
, “
Prediction of Wheel Squeal Noise Under Mode Coupling
,”
J. Sound Vib.
,
465
(
3
), p.
115025
.
25.
Meehan
,
P. A.
,
2020
, “
Investigation of Chaotic Instabilities in Railway Wheel Squeal
,”
Nonlinear Dyn.
,
100
(
1
), pp.
159
172
.
26.
Jiang
,
J.
,
Anderson
,
D. C.
, and
Dwight
,
R.
,
2015
, “The Mechanisms of Curve Squeal”
Noise and Vibration Mitigation for Rail Transportation Systems
, Vol.
126
,
Nielsen
J.
, et al
, ed.,
Springer
,
Heidelberg
, pp.
587
594
.
27.
Chen
,
G. X.
,
Xiao
,
J. B.
, and
Liu
,
Q. Y.
,
2008
, “Complex Eigenvalue Analysis of Railway Curve Squeal,”
Noise and Vibration Mitigation for Rail Transportation Systems
, Vol.
99
,
Schulte-Werning
B.
, et al
, ed.,
Springer
,
Heidelberg
, pp.
433
439
.
28.
Fourie
,
D. J.
,
Gräbe
,
P. J.
,
Heyns
,
P. S.
, and
Fröhling
,
R. D.
,
2018
,
Noise and Vibration Mitigation for Rail Transportation Systems
,
D.
Anderson
, et al
, ed., Vol.
139
,
Springer
,
Heidelberg
, pp.
55
67
.
29.
Lai
,
V.-V.
,
Chiello
,
O.
,
Brunel
,
J.-F.
, and
Dufrenoy
,
P.
,
2019
, “
Full Finite Element Models and Reduction Strategies for the Simulation of Friction-Induced Vibrations of Rolling Contact Systems
,”
J. Sound Vib.
,
444
, pp.
197
215
.
30.
Lai
,
V.-V.
,
Anciant
,
M.
,
Chiello
,
O.
,
Brunel
,
J.-F.
, and
Dufrenoy
,
P.
,
2021
, “
A Nonlinear FE Model for Wheel/Rail Curve Squeal in the Time-Domain Including Acoustic Predictions
,”
Appl Acoust.
,
179
, p.
108031
.
31.
Ding
,
B.
,
Squicciarini
,
G.
,
Thompson
,
D.
, and
Corradi
,
R.
,
2018
, “
An Assessment of Mode-Coupling and Falling-Friction Mechanisms in Railway Curve Squeal Through a Simplified Approach
,”
J. Sound Vib.
,
423
, pp.
126
140
.
32.
Thompson
,
D. J.
,
Squicciarini
,
G.
,
Ding
,
B.
, and
Baeza
,
L.
,
2018
, “
A State-of-the-art Review of Curve Squeal Noise: Phenomena, Mechanisms, Modelling and Mitigation
,” Noise and Vibration Mitigation for Rail Transportation Systems
, Vol.
139
, pp.
3
41
.
33.
Beshbichi
,
O. E.
,
Wan
,
C.
,
Bruni
,
S.
, and
Kassa
,
E.
,
2019
, “
Complex Eigenvalue Analysis and Parameters Analysis to Investigate the Formation of Railhead Corrugation in Sharp Curves
,”
Wear
,
450–451
, p.
203150
.
34.
Xu
,
J.
,
Cui
,
X. L.
,
Ding
,
H. H.
,
Bao
,
P. Y.
,
Li
,
T.
,
Tang
,
C. P.
, and
Xu
,
X. Y.
,
2023
, “
Optimization of Vibration Absorbers for the Suppression of Rail Corrugation in the Sharp Curved Section With Cologne-Egg Fasteners
,”
Veh. Syst. Dyn.
,
62
(
2
), pp.
395
410
.
35.
Chen
,
G. X.
,
Zhang
,
S.
,
Wu
,
B. W.
,
Zhao
,
X. N.
,
Wen
,
Z. F.
,
Ouyang
,
H.
, and
Zhu
,
M. H.
,
2020
, “
Field Measurement and Model Prediction of Rail Corrugation
,”
Proc IMechE, Part F: J Rail Rapid Transit
,
234
(
4
), pp.
381
392
.
36.
Li
,
W.
,
Wang
,
H. Y.
,
Wen
,
Z. F.
,
Du
,
X.
,
Wu
,
L.
,
Li
,
X.
, and
Jin
,
X. S.
,
2016
, “
An Investigation Into the Mechanism of Metro Rail Corrugation Using Experimental and Theoretical Methods
,”
Proc IMechE, Part F: J Rail Rapid Transit
,
230
(
4
), pp.
1025
1039
.
37.
Bajer
,
A.
,
Belsky
,
V.
, and
Li
,
J. Z.
,
2003
, “
Combining a Nonlinear Static Analysis and Complex Eigenvalue Extraction in Brake Squeal Simulation
,” SAE Paper, 2003-01-3349.
38.
Kung
,
S. W.
,
Stelzer
,
G.
,
Belsky
,
V.
, and
Bajer
,
A.
,
2003
, “
Brake Squeal Analysis Incorporating Contact Conditions and Other Nonlinear Effects
,” SAE Paper, 2003-01-3343.
39.
Yuan
,
Y.
,
1996
, “
An Eigenvalue Analysis Approach to Break Squeal Problem
,”
Proceedings of the 29th ISATA Conference on Automotive Braking Systems
,
Florence, Italy
,
June
, pp.
3
6
.
40.
Qiao
,
G.
,
Wang
,
L. P.
, and
Zheng
,
T. S.
,
2007
, “
Numerical Calculations of Pressure Distribution in the Bearing Clearance of Circular Aerostatic Thrust Bearings With a Single Air Supply Inlet
,”
ASME J. Tribol.
,
129
(
2
), pp.
348
353
.
41.
Wang
,
X. C.
,
Mo
,
J. L.
,
Ouyang
,
H.
,
Wang
,
D. W.
,
Chen
,
G. X.
,
Zhu
,
M. H.
, and
Zhou
,
Z. R.
,
2016
, “
Squeal Noise of Friction Material With Groove-Textured Surface: An Experimental and Numerical Analysis
,”
ASME J. Tribol.
,
138
(
2
), p.
021401
.
42.
Han
,
J.
,
He
,
Y. P.
,
Xiao
,
X. B.
,
Sheng
,
X. Z.
,
Zhao
,
G. T.
, and
Jin
,
X. S.
,
2017
, “
Effect of Control Measures on Wheel/Rail Noise When the Vehicle Curves
,”
Appl. Sci-Basel
,
7
(
11
), p.
1144
.
43.
Quan
,
X.
,
Mo
,
J. L.
,
Huang
,
B.
,
Tang
,
B.
,
Ouyang
,
H. J.
, and
Zhou
,
Z. R.
,
2020
, “
Influence of the Friction Block Shape and Installation Angle of High-Speed Train Brakes on Brake Noise
,”
ASME J. Tribol.
,
142
(
3
), p.
031701
.
44.
Eadie
,
D. T.
, and
Santoro
,
M.
,
2006
, “
Top-of-rail Friction Control for Curve Noise Mitigation and Corrugation Rate Reduction
,”
J. Sound Vib.
,
293
(
3–5
), pp.
747
757
.
45.
Liu
,
X. G.
, and
Meehan
,
P. A.
,
2016
, “
Investigation of Squeal Noise Under Positive Friction Characteristics Condition Provided by Friction Modifiers
,”
J. Sound Vib.
,
371
, pp.
393
405
.
46.
He
,
Y. P.
,
Zhou
,
Q.
,
Xu
,
F.
,
Sheng
,
X. Z.
,
He
,
Y. L.
, and
Han
,
J.
,
2023
, “
An Investigation Into the Effect of Rubber Design Parameters of a Resilient Wheel on Wheel-Rail Noise
,”
Appl. Acoust.
,
205
, p.
109259
.
47.
Zhu
,
Q.
,
Chen
,
G. X.
,
Kang
,
X.
, and
Ren
,
W. J.
,
2021
, “
Effect of Wheel Structure on Friction-Induced Wheel Polygonal Wear of High-Speed Train
,”
Tribol. Trans.
,
64
(
4
), pp.
606
615
.
48.
Luo
,
Y.-K.
,
Zhou
,
L.
, and
Ni
,
Y.-Q.
,
2022
, “
Towards the Understanding of Wheel-Rail Flange Squeal: In-Situ Experiment and Genuine 3D Profile-Enhanced Transient Modelling
,”
Mech. Syst. Signal Process.
,
180
, p.
109455
.
You do not currently have access to this content.