Abstract

Today, mineral or synthetic oils that are made out of fossil raw materials are the most common lubricants in gear drive applications. Most of them are nonbiodegradable and may pose a risk to the environment. An important step to minimize the risk and the ecological footprint is the use of biodegradable and eco-friendly lubricants. Former research shows the potential of water-based lubricants in gear applications. Therefore, an oil-free, water-based lubricant was developed for this study. The base lubricant contains plant-based thickeners to generate an appropriate viscosity for a sufficient lubricant film thickness in the tooth contact. In experimental investigations, the sliding wear and scuffing performance has been examined under variation of the added polymers and additives. The scuffing tests A/8.3/RT are performed according to DIN ISO 14635-1. The wear test procedure is based on DGMK 377-01. In both scuffing tests with the sample, the failure load stage = 8 was achieved. For case-carburized gears, a “medium” to “high” amount of wear can be detected. Additional tests with nitrided gears show a “low” amount of wear. This article aims to show the great potential of water-based oils for gear lubrication and suggests operating conditions for maximum wear and scuffing carrying capacity.

References

1.
Gesellschaft für Tribologie e. V.
,
2002
, “
GfT Worksheet 7: Wear, Friction—Definitions, Terms, Testing
.”
2.
Niemann
,
G.
,
Winter
,
H.
,
Höhn
,
B.-R.
, and
Stahl
,
K.
,
2019
,
Maschine Elements Volume 1
, 5th ed.,
Springer Vieweg
,
Berlin, Heidelberg
(in German).
3.
Niemann
,
G.
, and
Winter
,
H.
,
1983
,
Machine Elements Volume 2
, 2nd ed,
Springer
,
Berlin, Germany
(in German).
4.
Li
,
S.
,
Kolivand
,
A.
, and
Wei
,
J.
,
2022
, “
Determination of Critical Temperature of Scuffing for AISI 8620 Steel Gear Contacts Lubricated by Dexron 6 Through Computational Simulation of Experiment
,”
ASME J. Tribol.
,
144
(
8
), p.
081201
.
5.
DIN Deutsches Institut für Normung e.V.
, “
DIN ISO 14635-1: 2006-05, Gears—FZG Test Methods Part 1: FZG Test Method A/8.3/90 for Determining the Relative Scuffing Load Capacity of Lubricating Oils
” (in German).
6.
Höhn
,
B.-R.
,
Michaelis
,
K.
,
Collenberg
,
H.
, and
Schlenk
,
L.
,
2001
, “
Effect of Temperature on the Scuffing Load Capacity of EP Gear Lubricants
,”
Lubr. Sci. TriboTest
,
7
(
4
), pp.
317
332
.
7.
DIN Deutsches Institut für Normung e.V.
,
1979
,
DIN 3979: Tooth Damages on Gears; Designation, Characteristics, Causes
,
DIN
,
Berlin
.
8.
Sagraloff
,
N.
,
Winkler
,
K. J.
,
Tobie
,
T.
,
Stahl
,
K.
,
Folland
,
C.
, and
Asam
,
T.
,
2021
, “
Investigations on the Scuffing and Wear Characteristic Performance of an Oil Free Water-Based Lubricant for Gear Applications
,”
Lubricants
,
9
(
3
), p.
24
.
9.
Schultheiss
,
H.
,
Tobie
,
T.
,
Michaelis
,
K.
,
Höhn
,
B.-R.
, and
Stahl
,
K.
,
2014
, “
The Slow-Speed Wear Behavior of Case-Carburized Gears Lubricated With NLGI 00 Grease Under Boundary Lubrication Conditions
,”
Tribol. Trans.
,
2014
(
3
), pp.
524
532
.
10.
Yin
,
Z.
, and
Fan
,
Z.
,
2022
, “
Study on Surface Adhesive Wear and Wear Life of Double Involute Gears Under Mixed Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
144
(
9
), p.
091601
.
11.
Plewe
,
H.-J.
,
1980
, “
Studies on the Abrasion Wear of Lubricated, Slow-Running Gears
,”
Ph.D. thesis
,
Technical University of Munich
,
Munich, Germany
(in German).
12.
Bayerdörfer
,
I.
,
2000
, “
Influence of Operational Lubricant Changes on the Flank Load Capacity of Case-Hardened Spur Gears
,”
Ph.D. thesis
,
Technical University of Munich
,
Munich, Germany, Munich
(in German).
13.
International Organization for Standardization
,
2019
, “
ISO 6336-1:2019-11, Calculation of Load Capacity of Spur and Helical Gears—Part 1: Basic Principles, Introduction and General Influence Factors
,” ISO 6336-1.
14.
Höhn
,
B.-R.
,
Oster
,
P.
,
Radev
,
T.
,
Steinberger
,
G.
, and
Tobie
,
T.
,
2006
, “
Improvement of Standardized Test Methods for Evaluating the Lubricant Influence on Micropitting and Pitting Resistance of Case Carburized Gears
,” Code 75042 AGMA Technical Paper 06FTM07, October 2006.
15.
Höhn
,
B.-R.
,
Oster
,
P.
,
Tobie
,
T.
, and
Hergesell
,
M.
,
2006
,
Development of a Short Duration Pitting Test to Evaluate the Lubricant Influence on the Pitting Carrying Capacity of Spur Gears DGMK Report
, 2006-10, pp.
1
85
.
16.
König
,
J.
,
Tobie
,
T.
, and
Stahl
,
K.
,
2019
,
FVA-Nr. 459 III—Issue 1337—Lubricant Influence on Pitting Resistance—Final Report
,
Forschungsvereinigung Antriebstechnik e.V
,
Frankfurt/Main
.
17.
Felbermaier
,
M.
,
2018
, “
Investigations on Micropitting and Its Influence on the Pitting Load Capacity of Case-Hardened Cylindrical Gears
,”
Ph.D. thesis
,
Gear Research Center (FZG), Technical University of Munich
,
Munich, Germany
.
18.
Schönnenbeck
,
G.
, and
Emmert
,
S.
,
1993
,
FVA-Nr. 54/I-IV—Micro-Pitting Information Sheet: Test Procedure for the Investigation of the Micro-Pitting Capacity of Gear Lubricants
,
Forschungsvereinigung Antriebstechnik e.V.
,
Frankfurt/Main
.
19.
Schrade
,
U.
,
1999
, “
Influence of Gear Geometry and Operating Conditions on the Micropitting Load Carrying Capacity of Gears
,”
Ph.D. thesis
,
Technical University of Munich
,
Munich, Germany
(in German).
20.
ISO Internationale Organisation für Normung
,
2018
, “
ISO/TS 6336-22: 2018-04, Calculation of Load Capacity of Spur and Helical Gears—Part 22: Calculation of Micropitting Load Capacity
,” ISO/TS 6336-22.
21.
Höhn
,
B.-R.
,
Oster
,
P.
,
Schrade
,
U.
, and
Tobie
,
T.
,
2004
, “
Investigations on the Micropitting Load Capacity of Case Carburized Gears
,”
AGMA Tech. Paper 04FTM5
,
644
, pp.
1
13
.
22.
Höhn
,
B.-R.
,
Oster
,
P.
, and
Tobie
,
T.
,
2007
, “
Demands on the Micropitting Carrying Capacity of Gear Oils. Calculation of the Micropitting Carrying Capacity of Gear Wheels
,”
Tribol. Lubr. Technol.
,
5
(
5
), pp.
46
59
.
23.
Qin
,
H.
, and
Doll
,
G. L.
,
2023
, “
Effects of Water Contamination on Micropitting and Rolling Contact Fatigue of Bearing Steels
,”
ASME J. Tribol.
,
145
(
1
), p.
011501
.
24.
Bayerdörfer
,
I.
,
Michaelis
,
K.
, and
Höhn
,
B.-R.
,
1997
,
DGMK 377-1—Method to Assess the Wear Characteristics pf Lubricants FZG Test Method C/0,05/90:120/12—Information Sheet
,
Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e. V.
,
Germany
.
25.
CEC L-108-19
,
2019
, “
FZG Pitting Load Carrying Capacity Test for Gear Oils
.”
26.
DIN Deutsches Institut für Normung e.V.
,
2020
, “
DIN 3990-16: Determination of the Micro-Pitting Load-Carrying Capacity of Lubricants Using FZG-Test-Method GT-C/8.3/90
.”
27.
Sudhagar
,
S.
, and
Bhaskara Rao
,
L.
,
2022
, “
Analytical and Experimental Studies on Wear in Spur Gear Running in Dry Condition
,”
ASME J. Tribol.
,
144
(
2
), p.
021703
.
28.
Statista
,
2023
, “
Estimated Leading Lubricants Consuming Countries Worldwide in 2020 (in 1,000 Tons)
,” https://www.statista.com/statistics/821076/lubricants-global-market-volume-by-country/, Accessed March 6, 2023.
29.
Zainal
,
N.
,
Zulkifli
,
N.
,
Gulzar
,
M.
, and
Masjuki
,
H.
,
2018
, “
A Review on the Chemistry, Production, and Technological Potential of Bio-Based Lubricants
,”
Renew. Sust. Energy Rev.
,
82
(
1
), pp.
80
102
.
30.
Yilmaz
,
M.
,
Mirza
,
M.
,
Lohner
,
T.
, and
Stahl
,
K.
,
2019
, “
Superlubricity in EHL Contacts With Water-Containing Gear Fluids
,”
Lubricants
,
7
(
5
),
Article Number 46
.
31.
Yilmaz
,
M.
,
Lohner
,
T.
,
Michaelis
,
K.
, and
Stahl
,
K.
,
2019
, “
Minimizing Gear Friction With Water-Containing Gear Fluids
,”
Eng. Res.
,
83
(
3
), pp.
327
337
.
32.
Sagraloff
,
N.
,
Dobler
,
A.
,
Tobie
,
T.
,
Stahl
,
K.
, and
Ostrowski
,
J.
,
2019
, “
Development of an Oil Free Water-Based Lubricant for Gear Applications
,”
Lubricants
,
7
(
4
),
Article number 33
.
33.
Amann
,
T.
,
Chen
,
W.
,
Baur
,
M.
,
Kailer
,
A.
, and
Rühe
,
J.
,
2020
, “
Development of Galvanically Coupled Plain Bearings to Reduce Friction and Wear
,”
Eng. Res.
,
84
(
4
), pp.
315
322
.
34.
Chen
,
W.
,
Amann
,
T.
,
Kailer
,
A.
, and
Rühe
,
J.
,
2019
, “
Thin-Film Lubrication in the Water/Octyl-β-D-Glucopyranoside System: Macroscopic and Nanoscopic
,”
Tribol. Behav. Langmuir
,
35
, pp.
7136
7145
.
35.
Schmid-Amelunxen
,
M.
,
Schweigkofler
,
M.
,
Kilthau
,
T.
, and
Mühlemeier
,
J.
,
2010
, “
Water-Based Lubricants: European Patent
,” WO 2011/026576.
36.
Tomala
,
A.
,
Karpinska
,
A.
,
Werner
,
W.
,
Olver
,
A.
, and
Störi
,
H.
,
2010
, “
Tribological Properties of Additives for Water-Based Lubricants
,”
Wear
,
269
(
11–12
), pp.
804
810
.
37.
Ding
,
H.
,
Yang
,
X.
,
Xu
,
L.
,
Li
,
M.
,
Li
,
S.
,
Zhang
,
S.
, and
Xia
,
J.
,
2020
, “
Analysis and Comparison of Tribological Performance of Fatty Acid-Based Lubricant Additives With Phosphorus and Sulfur
,”
J. Bioresour. Bioprod.
,
5
(
2
), pp.
134
142
.
38.
Fan
,
M.
,
Du
,
X.
,
Ma
,
L.
,
Wen
,
P.
,
Zhang
,
S.
,
Dong
,
R.
,
Sun
,
W.
,
Yang
,
D.
,
Zhou
,
F.
, and
Liu
,
W.
,
2019
, “
In Situ Preparation of Multifunctional Additives in Water
,”
Tribol. Int.
,
130
, pp.
317
323
.
39.
Ye
,
X.
,
Wang
,
J.
, and
Fan
,
M.
,
2019
, “
Evaluating Tribological Properties of the Stearic Acid-Based Organic Nanomaterials as Additives for Aqueous Lubricants
,”
Tribol. Int.
,
140
, p.
105848
.
40.
Wang
,
Y.
,
Yu
,
Q.
,
Cai
,
M.
,
Zhou
,
F.
, and
Liu
,
W.
,
2018
, “
Halide-Free PN Ionic Liquids Surfactants as Additives for Enhancing Tribological Performance of Water-Based Liquid
,”
Tribol. Int.
,
128
, pp.
190
196
.
41.
Omasta
,
M.
,
Ebner
,
M.
,
Šperka
,
P.
,
Lohner
,
T.
,
Krupka
,
I.
,
Hartl
,
M.
,
Hoehn
,
B.-R.
, and
Stahl
,
K.
,
2018
, “
Film Formation in EHL Contacts With Oil-Impregnated Sintered Materials
,”
ILT
,
70
(
4
), pp.
612
619
.
42.
Zornek
,
B.
,
Tobie
,
T.
, and
Stahl
,
K.
,
2017
,
FVA-Nr. 482 IV, Issue 1206, Nitrided Internal/External Toothing—Final Report
,
Forschungsvereinigung Antriebstechnik e.V
,
Frankfurt/Main
.
43.
Laukotka
,
E.
,
2007
,
FVA—Issue 660—Reference Oil Catalogue—Final Report
,
Forschungsvereinigung Antriebstechnik e.V
,
Frankfurt/Main
.
44.
Eisner
,
P.
,
2008
,
Mineral Oil-Free Polymer-Based Lubricant for Cost Reduction and Resource Conservation in Machining and Surface Treatment Processes: Final Report
,
Bavarian Research Foundation (BFS)
,
Munich, Germany
.
45.
Eisner
,
P.
,
2012
,
Polymer-Based Lubricant to Replace Mineral Oils in Metal-Cutting Production—Integration in Industrial Production: Final Report
,
Bavarian Research Foundation (BFS)
,
Munich, Germany
.
46.
Schultheiß
,
H.
,
Tobie
,
T.
,
Michaelis
,
K.
,
Stahl
,
K.
, and
Höhn
,
B.-R.
,
2013
,
DGMK 725—Slow-Speed Wear Behaviour of Case-Hardened Gear Pairs When Lubricated With Gear Greases
,
Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e. V.
,
Hamburg
.
You do not currently have access to this content.