Abstract

Compared to rigid materials, people have a distinct tactile perception when touching flexible materials. Moreover, adding micro-patterns to the surface enhances the tactile experience even further. This sensation arises from the physical stimulation of frictional behavior between the skin and flexible materials. Therefore, this study focuses on human fingers as the research subjects and employs flexible materials with micro-textured surfaces as frictional objects. A friction test setup is designed to conduct a series of finger friction experiments, and theoretical explanations are provided to elucidate the reasons for performance variations. Research findings show that as the normal load increases, the frictional force gradually increases while the friction coefficient decreases. The former is attributed to the expanding contact area, while the latter is due to the inconsistent rate of frictional force increment with the normal load. The impact of friction velocity is mainly caused by changes in the viscous forces generated at the liquid film in the contact interface and the energy loss in elastic hysteresis. On the other hand, the effect of surface micro-topography is primarily a result of the transition between partial contact and full contact modes under the influence of normal load, leading to alterations in the contact area. Overall, during the finger friction process on a flexible micro-textured surface, changes in contact area play a vital role in modifying frictional performance, with adhesive friction exerting a more significant influence than deformation friction. This study summarizes the variations in frictional performance parameters based on experiments and analyzes the effects of contact area changes and deformation friction mechanisms from a theoretical perspective, providing a theoretical foundation for exploring the genesis of delicate tactile sensations during friction.

References

1.
Wang
,
C.
,
Liu
,
C.
,
Shang
,
F.
,
Niu
,
S.
,
Ke
,
L.
,
Zhang
,
N.
,
[Q7]Ma
,
B.
,
Li
,
R.
,
Sun
,
X.
, and
Zhang
,
S.
,
2022
, “
Tactile Sensing Technology in Bionic Skin: A Review
,”
Biosens. Bioelectron.
,
220
, p.
114882
.
2.
Zhang
,
S.
,
Zeng
,
J.
,
Wang
,
C.
,
Feng
,
L.
,
Song
,
Z.
,
Zhao
,
W.
,
Wang
,
Q.
, and
Liu
,
C.
,
2021
, “
The Application of Wearable Glucose Sensors in Point-of-Care Testing
,”
Front. Bioeng. Biotechnol.
,
9
, p.
774210
.
3.
Allen
,
Q.
, and
Raeymaekers
,
B.
,
2021
, “
Surface Texturing of Prosthetic Hip Implant Bearing Surfaces: A Review
,”
ASME J. Tribol.
,
143
(
4
), p.
040801
.
4.
Liu
,
Q.
,
Kouediatouka
,
A. N.
,
Jiang
,
S.
,
Yuan
,
H.
,
Li
,
J.
, and
Dong
,
G.
,
2023
, “
Laser Com-Texture on Ti6Al4V Surface for Lubricant Transportation to Improve Tribological Properties
,”
ASME J. Tribol.
,
145
(
3
), p.
031705
.
5.
Liu
,
X.
,
Gad
,
D.
,
Lu
,
Z.
,
Lewis
,
R.
,
Carré
,
M. J.
, and
Matcher
,
S. J.
,
2015
, “
The Contributions of Skin Structural Properties to the Friction of Human Finger-Pads
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
229
(
3
), pp.
294
311
.
6.
Berkey
,
C.
,
Biniek
,
K.
, and
Dauskardt
,
R. H.
,
2021
, “
Predicting Hydration and Moisturizer Ingredient Effects on Mechanical Behavior of Human Stratum Corneum
,”
Extreme Mech. Lett.
,
46
, p.
101327
.
7.
Yum
,
S. M.
,
Baek
,
I. K.
,
Hong
,
D.
,
Kim
,
J.
,
Jung
,
K.
,
Kim
,
S.
,
Eom
,
K.
, et al
,
2020
, “
Fingerprint Ridges Allow Primates to Regulate Grip
,”
Proc. Natl. Acad. Sci. U S A
,
117
(
50
), pp.
31665
31673
.
8.
Delhaye
,
B.
,
Barrea
,
A.
,
Edin
,
B. B.
,
Lefevre
,
P.
, and
Thonnard
,
J. L.
,
2016
, “
Surface Strain Measurements of Fingertip Skin Under Shearing
,”
J. R. Soc. Interface
,
13
, p.
20150874
.
9.
Warman
,
P. H.
, and
Ennos
,
A. R.
,
2009
, “
Fingerprints are Unlikely to Increase the Friction of Primate Fingerpads
,”
J. Exp. Biol.
,
212
(
13
), pp.
2016
2022
.
10.
Derler
,
S.
, and
Gerhardt
,
L. C.
,
2011
, “
Tribology of Skin: Review and Analysis of Experimental Results for the Friction Coefficient of Human Skin
,”
Tribol. Lett.
,
45
(
1
), pp.
1
27
.
11.
Wang
,
C.
,
Ma
,
B.
,
Zhai
,
R.
,
Li
,
R.
,
Zhang
,
N.
,
Zhang
,
K.
, and
Zhang
,
S.
,
2023
, “
Experimental Approach of Contact Mechanics for Polyethylene Materials With Human Skin Under Wet Condition
,”
J. Adhes. Sci. Technol.
,
37
(
22
), pp.
3222
3235
.
12.
Meyers
,
M. A.
,
Chen
,
P.-Y.
,
Lin
,
A. Y.-M.
, and
Seki
,
Y.
,
2008
, “
Biological Materials: Structure and Mechanical Properties
,”
Prog. Mater. Sci.
,
53
(
1
), pp.
1
206
.
13.
Adams
,
M. J.
,
Briscoe
,
B. J.
, and
Johnson
,
S. A.
,
2007
, “
Friction and Lubrication of Human Skin
,”
Tribol. Lett.
,
26
(
3
), pp.
239
253
.
14.
Zhang
,
S.
,
Kai
,
Y.
, and
Sunami
,
Y.
,
2018
, “
Tactile Sliding Behavior of R2R Mass-Produced PLLA Nanosheet Towards Biomedical Device in Skin Applications
,”
Nanomaterials
,
8
(
4
), p.
210
.
15.
Flynn
,
C.
,
Taberner
,
A.
, and
Nielsen
,
P.
,
2011
, “
Modeling the Mechanical Response of In Vivo Human Skin Under a Rich Set of Deformations
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1935
1946
.
16.
Veijgen
,
N. K.
,
van der Heide
,
E.
, and
Masen
,
M. A.
,
2013
, “
A Multivariable Model for Predicting the Frictional Behaviour and Hydration of the Human Skin
,”
Skin Res. Technol.
,
19
(
3
), pp.
330
338
.
17.
Zahouani
,
H.
,
Boyer
,
G.
,
Pailler-Mattei
,
C.
,
Ben Tkaya
,
M.
, and
Vargiolu
,
R.
,
2011
, “
Effect of Human Ageing on Skin Rheology and Tribology
,”
Wear
,
271
(
9–10
), pp.
2364
2369
.
18.
Cornuault
,
P.-H.
,
Carpentier
,
L.
,
Bueno
,
M.-A.
,
Cote
,
J.-M.
, and
Monteil
,
G.
,
2015
, “
Influence of Physico-Chemical, Mechanical and Morphological Fingerpad Properties on the Frictional Distinction of Sticky/Slippery Surfaces
,”
J. R. Soc., Interface
,
12
(
110
), p.
20150495
.
19.
Nakajima
,
K.
, and
Narasaka
,
H.
,
1993
, “
Evaluation of Skin Surface Associated With Morphology and Coefficient of Friction
,”
Int. J. Cosmet. Sci.
,
15
(
4
), pp.
135
151
.
20.
Zhang
,
S.
,
2018
, “
Modelling Non-Uniform Deformation of Human Skin in Multi-Asperity Contact
,”
Microsyst. Technol.
,
24
(
8
), pp.
3381
3388
.
21.
Garcia Aznar
,
J. M.
,
Diosa
,
J. G.
,
Moreno
,
R.
,
Chica
,
E. L.
,
Villarraga
,
J. A.
, and
Tepole
,
A. B.
,
2021
, “
Changes in the Three-Dimensional Microscale Topography of Human Skin With Aging Impact Its Mechanical and Tribological Behavior
,”
PLos One
,
16
(
7
), p.
e0241533
.
22.
Khamis
,
H.
,
Afzal
,
H. M. N.
,
Sanchez
,
J.
,
Vickery
,
R.
,
Wiertlewski
,
M.
,
Redmond
,
S. J.
, and
Birznieks
,
I.
,
2021
, “
Friction Sensing Mechanisms for Perception and Motor Control: Passive Touch Without Sliding May Not Provide Perceivable Frictional Information
,”
J. Neurophysiol.
,
125
(
3
), pp.
809
823
.
23.
Zhang
,
S.
,
2016
,
Texture Design for Skin Friction and Touch Perception of Stainless Steel Surfaces
,
University of Twente
,
Enshed, Netherlands
.
24.
Temel
,
M.
,
Johnson
,
A. A.
, and
Lloyd
,
A. B.
,
2022
, “
Evaluating the Repeatability of Friction Coefficient Measurements and Tactile Perceptions in Skin–Textile Interactions Across Body Regions
,”
Tribol. Lett.
,
70
(
1
), p.
23
.
25.
Kim
,
M.-S.
,
Kim
,
I.-Y.
,
Park
,
Y.-K.
, and
Lee
,
Y.-Z.
,
2013
, “
The Friction Measurement Between Finger Skin and Material Surfaces
,”
Wear
,
301
(
1–2
), pp.
338
342
.
26.
Hendriks
,
C. P.
, and
Franklin
,
S. E.
,
2009
, “
Influence of Surface Roughness, Material and Climate Conditions on the Friction of Human Skin
,”
Tribol. Lett.
,
37
(
2
), pp.
361
373
.
27.
Gee
,
M. G.
,
Tomlins
,
P.
,
Calver
,
A.
,
Darling
,
R. H.
, and
Rides
,
M.
,
2005
, “
A New Friction Measurement System for the Frictional Component of Touch
,”
Wear
,
259
(
7–12
), pp.
1437
1442
.
28.
Schwartz
,
D.
,
Magen
,
Y. K.
,
Levy
,
A.
, and
Gefen
,
A.
,
2018
, “
Effects of Humidity on Skin Friction Against Medical Textiles as Related to Prevention of Pressure Injuries
,”
Int. Wound J.
,
15
(
6
), pp.
866
874
.
29.
Nishi
,
T.
,
Yamaguchi
,
T.
,
Shibata
,
K.
, and
Hokkirigawa
,
K.
,
2021
, “
Friction Behavior Between an Artificial Skin Block and a Glass Plate Under Unlubricated and Partly/Completely Water-Lubricated Conditions
,”
Tribol. Int.
,
163
, p.
107179
.
30.
Pasumarty
,
S. M.
,
Johnson
,
S. A.
,
Watson
,
S. A.
, and
Adams
,
M. J.
,
2011
, “
Friction of the Human Finger Pad: Influence of Moisture, Occlusion and Velocity
,”
Tribol. Lett.
,
44
(
2
), pp.
117
137
.
31.
Zhou
,
X.
,
Mo
,
J. L.
,
Li
,
Y. Y.
,
Xu
,
J. Y.
,
Zhang
,
X.
,
Cai
,
S.
, and
Jin
,
Z. M.
,
2018
, “
Correlation Between Tactile Perception and Tribological and Dynamical Properties for Human Finger Under Different Sliding Speeds
,”
Tribol. Int.
,
123
, pp.
286
295
.
32.
Zhang
,
S.
,
Zeng
,
X.
,
Matthews
,
D. T. A.
,
Igartua
,
A.
,
Rodriguez–Vidal
,
E.
,
Fortes
,
J. C.
, and
Van Der Heide
,
E.
,
2017
, “
Texture Design for Light Touch Perception
,”
Biosurf. Biotribol.
,
3
(
1
), pp.
25
34
.
33.
Oprisan
,
C. M.
,
Chiriac
,
B.
,
Carlescu
,
V.
, and
Olaru
,
D. N.
,
2020
, “
Friction Forces on Human Finger Skin
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
724
(
1
), p.
012059
.
34.
Babu
,
D.
,
Konyo
,
M.
,
Nagano
,
H.
, and
Tadokoro
,
S.
,
2018
, “
Introducing Whole Finger Effects in Surface Haptics: An Extended Stick-Slip Model Incorporating Finger Stiffness
,”
IEEE Trans. Haptics
,
11
(
3
), pp.
417
430
.
35.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. A
,
324
(
1558
), pp.
301
313
.
36.
van Kuilenburg
,
J.
,
Masen
,
M. A.
, and
van der Heide
,
E.
,
2013
, “
The Role of the Skin Microrelief in the Contact Behaviour of Human Skin: Contact Between the Human Finger and Regular Surface Textures
,”
Tribol. Int.
,
65
(
SI
), pp.
81
90
.
37.
Pailler-Mattéi
,
C.
, and
Zahouani
,
H.
,
2006
, “
Analysis of Adhesive Behaviour of Human Skin In Vivo by an Indentation Test
,”
Tribol. Int.
,
39
(
1
), pp.
12
21
.
38.
Derler
,
S.
,
Gerhardt
,
L. C.
,
Lenz
,
A.
,
Bertaux
,
E.
, and
Hadad
,
M.
,
2009
, “
Friction of Human Skin Against Smooth and Rough Glass as a Function of the Contact Pressure
,”
Tribol. Int.
,
42
(
11–12
), pp.
1565
1574
.
39.
Zhang
,
S.
,
Zeng
,
X.
,
Matthews
,
D. T. A.
,
Igartua
,
A.
,
Rodriguez–Vidal
,
E.
,
Contreras Fortes
,
J.
, and
Van Der Heide
,
E.
,
2017
, “
Finger pad Friction and Tactile Perception of Laser Treated, Stamped and Cold Rolled Micro-Structured Stainless Steel Sheet Surfaces
,”
Friction
,
5
(
2
), pp.
207
218
.
40.
Inoue
,
K.
,
Okamoto
,
S.
,
Akiyama
,
Y.
, and
Yamada
,
Y.
,
2020
, “
Random Switch of Adhesion and Deformation Friction Depending on Material Hardness
,”
2020 IEEE 2nd Global Conference on Life Sciences and Technologies (LifeTech)
,
Hanoi, Vietnam
,
Mar. 10–12
, pp.
204
206
.
41.
Joseph
,
P.
,
Cottin-Bizonne
,
C.
,
Benoit
,
J. M.
,
Ybert
,
C.
,
Journet
,
C.
,
Tabeling
,
P.
, and
Bocquet
,
L.
,
2006
, “
Slippage of Water Past Superhydrophobic Carbon Nanotube Forests in Microchannels
,”
Phys. Rev. Lett.
,
97
(
15
), p.
156104
.
42.
Chen
,
L.
,
Shang
,
L.
,
Liu
,
Z.
,
Mukherjee
,
S.
,
Cai
,
Y.
, and
Wang
,
B.
,
2023
, “
Effects of Chevron Micro-Textures on Tribological and Lubricating Performance of Cylinder Block/Valve Plate Interface in Axial Piston Pumps
,”
ASME J. Tribol.
,
145
(
3
), p.
032201
.
43.
Balestra
,
S.
,
Costagliola
,
G.
,
Pegoraro
,
A.
,
Picollo
,
F.
,
Molinari
,
J.-F.
,
Pugno
,
N. M.
,
Vittone
,
E.
,
Bosia
,
F.
, and
Sin
,
A.
,
2022
, “
Experimental and Numerical Study of the Effect of Surface Patterning on the Frictional Properties of Polymer Surfaces
,”
ASME J. Tribol.
,
144
(
3
), p.
031704
.
44.
Tomlinson
,
S. E.
,
Lewis
,
R.
,
Carré
,
M. J.
, and
Franklin
,
S. E.
,
2013
, “
Human Finger Friction in Contacts With Ridged Surfaces
,”
Wear
,
301
(
1–2
), pp.
330
337
.
45.
Kwiatkowska
,
M.
,
Franklin
,
S. E.
,
Hendriks
,
C. P.
, and
Kwiatkowski
,
K.
,
2009
, “
Friction and Deformation Behaviour of Human Skin
,”
Wear
,
267
(
5–8
), pp.
1264
1273
.
46.
Findley
,
W. N.
, and
Davis
,
F. A.
,
2013
,
Creep and Relaxation of Nonlinear Viscoelastic Materials
,
Courier Corporation
,
Cambridge, MA
.
47.
McKee
,
C. T.
,
Last
,
J. A.
,
Russell
,
P.
, and
Murphy
,
C. J.
,
2011
, “
Indentation Versus Tensile Measurements of Young's Modulus for Soft Biological Tissues
,”
Tissue Eng., Part B
,
17
(
3
), pp.
155
164
.
48.
Tang
,
W.
,
Ge
,
S.-R.
,
Zhu
,
H.
,
Cao
,
X.-C.
, and
Li
,
N.
,
2008
, “
The Influence of Normal Load and Sliding Speed on Frictional Properties of Skin
,”
J. Bionic Eng.
,
5
(
1
), pp.
33
38
.
You do not currently have access to this content.