Abstract

In the current work, the AZ91 hybrid composites are fabricated through the utilization of the stir casting technique, incorporating aluminum oxide (Al2O3) and graphene (Gr) as reinforcing elements. Wear behavior of the AZ91/Gr/Al2O3 composites was examined with the pin-on-disc setup under dry conditions. In this study, the factors such as reinforcement percentage (R), load (L), velocity (V), and sliding distance (D) have been chosen to investigate their impact on the wear-rate (WR) and coefficient of friction (COF). This study utilizes a full factorial design to conduct experiments. The experimental data was critically analyzed to examine the impact of each wear parameter (i.e., R, L, V, and D) on the WR and COF of composites. The wear mechanisms at the extreme conditions of maximum and minimum wear rates are also investigated by utilizing the scanning electron microscope (SEM) images of specimen's surface. The SEM study revealed the presence of delamination, abrasion, oxidation, and adhesion mechanisms on the surface experiencing wear. Machine learning (ML) models, such as decision tree (DT), random forest (RF), and gradient boosting regression (GBR), are employed to create a robust prediction model for predicting output responses based on input variables. The prediction model was trained and tested with 95% and 5% experimental data points, respectively. It was noticed that among all the models, the GBR model exhibited superior performance in predicting WR, with mean square error (MSE) = 0.0398, root-mean-square error (RMSE) = 0.1996, mean absolute error (MAE) = 0.1673, and R2 = 98.89, surpassing the accuracy of other models.

References

1.
Girish
,
B. M.
,
Satish
,
B. M.
,
Sarapure
,
S.
, and
Basawaraj
,
2016
, “
Optimization of Wear Behavior of Magnesium Alloy AZ91 Hybrid Composites Using Taguchi Experimental Design
,”
Metall. Mater. Trans. A
,
47
(
6
), pp.
3193
3200
.
2.
Soorya Prakash
,
K.
,
Balasundar
,
P.
,
Nagaraja
,
S.
,
Gopal
,
P. M.
, and
Kavimani
,
V.
,
2016
, “
Mechanical and Wear Behaviour of Mg–SiC–Gr Hybrid Composites
,”
J. Magnes. Alloy.
,
4
(
3
), pp.
197
206
.
3.
Aatthisugan
,
I.
,
Razal Rose
,
A.
, and
Selwyn Jebadurai
,
D.
,
2017
, “
Mechanical and Wear Behaviour of AZ91D Magnesium Matrix Hybrid Composite Reinforced With Boron Carbide and Graphite
,”
J. Magnes. Alloy.
,
5
(
1
), pp.
20
25
.
4.
Karuppusamy
,
P.
,
Lingadurai
,
K.
, and
Sivananth
,
V.
,
2019
, “
To Study the Role of WC Reinforcement and Deep Cryogenic Treatment on AZ91 MMNC Wear Behavior Using Multilevel Factorial Design
,”
ASME J. Tribol.
,
141
(
4
), p.
041608
.
5.
Abebe
,
S. K.
,
Beri
,
H.
,
Sinha
,
D. K.
,
Rajhi
,
A. A.
,
Hossain
,
N.
,
Duhduh
,
A. A.
,
Zainuddin
,
S.
,
Mohammed
,
G.
, and
Ahmed
,
S.
,
2023
, “
Wear Behavior of AZ61 Matrix Hybrid Composite Fabricated via Friction Stir Consolidation : A Combined RSM Box—Behnken and Genetic Algorithm Optimization
,”
J. Compos. Sci.
,
275
(
7
), pp.
1
18
.
6.
Pasha
,
M. B.
,
Narasimha Rao
,
R.
,
Ismail
,
S.
,
Tekumalla
,
S.
, and
Gupta
,
M.
,
2022
, “
Tribological Behavior of Mg/Fe3O4 Recycled Nanocomposites Processed Through Turning Induced Deformation Technique
,”
ASME J. Tribol.
,
144
(
12
), p.
121702
.
7.
Turan
,
M. E.
,
Zengin
,
H.
, and
Sun
,
Y.
,
2020
, “
Dry Sliding Wear Behavior of (MWCNT + GNPs) Reinforced AZ91 Magnesium Matrix Hybrid Composites
,”
Met. Mater. Int.
,
26
(
4
), pp.
541
550
.
8.
Kartheesan
,
S.
,
Shahul Hamid Khan
,
B.
,
Kamaraj
,
M.
,
Tekumalla
,
S.
, and
Gupta
,
M.
,
2022
, “
Dry Sliding Wear Behavior of Magnesium Nanocomposites Using Response Surface Methodology
,”
ASME J. Tribol.
,
144
(
1
), p.
011704
.
9.
Aydin
,
F.
, and
Durgut
,
R.
,
2021
, “
Estimation of Wear Performance of AZ91 Alloy Under Dry Sliding Conditions Using Machine Learning Methods
,”
Trans. Nonferrous Met. Soc. China
,
31
(
1
), pp.
125
137
.
10.
Zhu
,
Y.
,
Yuan
,
Z.
,
Khonsari
,
M. M.
,
Zhao
,
S.
, and
Yang
,
H.
,
2023
, “
Small-Dataset Machine Learning for Wear Prediction of Laser Powder Bed Fusion Fabricated Steel
,”
ASME J. Tribol.
,
145
(
9
), p.
081701
.
11.
Murashima
,
M.
,
Yamada
,
T.
,
Umehara
,
N.
,
Tokoroyama
,
T.
, and
Lee
,
W.-Y.
,
2023
, “
Novel Friction Stabilization Technology for Surface Damage Conditions Using Machine Learning
,”
Tribol. Int.
,
180
, p.
108280
.
12.
Alagarsamy
,
S. V.
,
Balasundaram
,
R.
,
Ravichandran
,
M.
,
Mohanavel
,
V.
,
Karthick
,
A.
, and
Devi
,
S. S.
,
2021
, “
Taguchi Approach and Decision Tree Algorithm for Prediction of Wear Rate in Zinc Oxide-Filled AA7075 Matrix Composites
,”
Surf. Topogr.: Metrol. Prop.
,
9
(
3
), p.
035005
.
13.
Peng
,
Y.
,
Cai
,
J.
,
Wu
,
T.
,
Cao
,
G.
,
Kwok
,
N.
, and
Peng
,
Z.
,
2020
, “
WP-DRnet: A Novel Wear Particle Detection and Recognition Network for Automatic Ferrograph Image Analysis
,”
Tribol. Int.
,
151
, p.
106379
.
14.
Prasanth
,
I. S. N. V. R.
,
Jeevanandam
,
P.
,
Selvaraju
,
P.
,
Sathish
,
K.
,
Hasane Ahammad
,
S. K.
,
Sujatha
,
P.
,
Kaarthik
,
M.
,
Mayakannan
,
S.
, and
Sasikumar
,
B.
,
2023
, “
Study of Friction and Wear Behavior of Graphene-Reinforced AA7075 Nanocomposites by Machine Learning
,”
J. Nanomater.
,
2023
(
special issue
), pp.
1
15
.
15.
Bhaumik
,
S.
,
Pathak
,
S. D.
,
Dey
,
S.
, and
Datta
,
S.
,
2019
, “
Artificial Intelligence Based Design of Multiple Friction Modifiers Dispersed Castor Oil and Evaluating Its Tribological Properties
,”
Tribol. Int.
,
140
, p.
105813
.
16.
Aydin
,
F.
,
Durgut
,
R.
,
Mustu
,
M.
, and
Demir
,
B.
,
2023
, “
Prediction of Wear Performance of ZK60/CeO2 Composites Using Machine Learning Models
,”
Tribol. Int.
,
177
, p.
107945
.
17.
Xiyang
,
L.
,
Guo
,
C.
,
Tengfei
,
H.
, and
Wenping
,
P.
,
2023
, “
A Combined Deep Learning Model for Damage Size Estimation of Rolling Bearing
,”
Int. J Eng. Res.
,
24
(
4
), pp.
1362
1373
.
18.
Hasan
,
M. S.
,
Kordijazi
,
A.
,
Rohatgi
,
P. K.
, and
Nosonovsky
,
M.
,
2022
, “
Triboinformatics Approach for Friction and Wear Prediction of Al-Graphite Composites Using Machine Learning Methods
,”
ASME J. Tribol.
,
144
(
1
), p.
011701
.
19.
Reena Roy
,
R.
,
Shanmugam
,
L.
,
Vinothini
,
A.
,
Venkatachalam
,
N.
,
Sumathy
,
G.
,
Murugeshan
,
B.
,
Mercy Rajaselvi Beaulah
,
P.
, and
Kerga
,
G. A.
,
2023
, “
Investigation of the Wear Behavior of AA6063/Zirconium Oxide Nanocomposites Using Hybrid Machine Learning Algorithms
,”
J. Chem.
,
2023
(
special issue
), pp.
1
16
.
20.
Kolev
,
M.
,
Drenchev
,
L.
, and
Petkov
,
V.
,
2023
, “
Fabrication, Experimental Investigation and Prediction of Wear Behavior of Open-Cell AlSi10Mg-SiC Composite Materials
,”
Metals (Basel)
,
13
(
4
), p.
814
.
21.
Kruthiventi
,
S. S. H.
, and
Ammisetti
,
D. K.
,
2023
, “
Experimental Investigation and Machine Learning Modeling of Wear Characteristics of AZ91 Composites
,”
ASME J. Tribol.
,
145
(
10
), p.
101704
.
22.
Czajkowski
,
M.
, and
Kretowski
,
M.
,
2016
, “
The Role of Decision Tree Representation in Regression Problems—An Evolutionary Perspective
,”
Appl. Soft Comput.
,
48
, pp.
458
475
.
23.
Natekin
,
A.
, and
Knoll
,
A.
,
2013
, “
Gradient Boosting Machines, a Tutorial
,”
Front. Neurorobot.
,
7
, pp.
1
21
.
24.
Deng
,
W.
,
Huang
,
Z.
,
Zhang
,
J.
, and
Xu
,
J.
,
2021
, “
A Data Mining Based System for Transaction Fraud Detection
,”
2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE 2021)
,
Guangzhou, China
,
Jan. 15–17
, pp.
542
545
.
25.
Fan
,
M.
,
Xiao
,
K.
,
Sun
,
L.
,
Zhang
,
S.
, and
Xu
,
Y.
,
2022
, “
Automated Hyperparameter Optimization of Gradient Boosting Decision Tree Approach for Gold Mineral Prospectivity Mapping in the Xiong’ershan Area
,”
Minerals
,
12
(
12
), p.
1621
.
26.
Kottala
,
R. K.
,
Chigilipalli
,
B. K.
,
Mukuloth
,
S.
,
Shanmugam
,
R.
,
Kantumuchu
,
V. C.
,
Ainapurapu
,
S. B.
, and
Cheepu
,
M.
,
2023
, “
Thermal Degradation Studies and Machine Learning Modelling of Nano-Enhanced Sugar Alcohol-Based Phase Change Materials for Medium Temperature Applications
,”
Energies
,
16
(
5
), p.
2187
.
27.
Yu
,
S. R.
, and
Huang
,
Z. Q.
,
2014
, “
Dry Sliding Wear Behavior of Fly Ash Cenosphere/AZ91D Mg Alloy Composites
,”
J. Mater. Eng. Perform.
,
23
(
10
), pp.
3480
3488
.
28.
Xiu
,
K.
,
Wang
,
H. Y.
,
Sui
,
H. L.
,
Wang
,
Y.
,
Xu
,
C. L.
,
Wang
,
J. G.
, and
Jiang
,
Q. C.
,
2006
, “
The Sliding Wear Behavior of TiCp/AZ91 Magnesium Matrix Composites
,”
J. Mater. Sci.
,
41
(
21
), pp.
7052
7058
.
29.
Aydin
,
F.
,
Sun
,
Y.
,
Ahlatci
,
H.
, and
Turen
,
Y.
,
2018
, “
Investigation of Microstructure, Mechanical and Wear Behaviour of B4C Particulate Reinforced Magnesium Matrix Composites by Powder Metallurgy
,”
Trans. Indian Inst. Met.
,
71
(
4
), pp.
873
882
.
30.
Poddar
,
P.
,
Das
,
A.
, and
Sahoo
,
K. L.
,
2014
, “
Dry Sliding Wear Characteristics of Gravity Die-Cast Magnesium Alloys
,”
Metall. Mater. Trans. A
,
45
(
4
), pp.
2270
2283
.
31.
Gopal
,
P. M.
,
Soorya Prakash
,
K.
,
Nagaraja
,
S.
, and
Kishore Aravinth
,
N.
,
2017
, “
Effect of Weight Fraction and Particle Size of CRT Glass on the Tribological Behaviour of Mg-CRT-BN Hybrid Composites
,”
Tribol. Int.
,
116
, pp.
338
350
.
32.
Anand
,
V. K.
,
Aherwar
,
A.
,
Mia
,
M.
,
Elfakir
,
O.
, and
Wang
,
L.
,
2020
, “
Influence of Silicon Carbide and Porcelain on Tribological Performance of Al6061 Based Hybrid Composites
,”
Tribol. Int.
,
151
, p.
106514
.
33.
Samal
,
P.
, and
Vundavilli
,
P. R.
,
2023
, “
Dry Sliding Wear Performances of AA5052 Hybrid Composite Brake Disc Materials Reinforced With In Situ Synthesized TiC and Multi-Walled Carbon Nanotube
,”
ASME J. Tribol.
,
145
(
10
), p.
101705
.
34.
Tajdeen
,
A.
,
Megalingam
,
A.
,
Sivanesh Prabhu
,
M.
, and
Wasim Khan
,
M.
,
2023
, “
Role of Tungsten Disulfide Particles on the Microstructure, Mechanical, and Tribological Behaviors of Friction Stir-Processed Magnesium-Based Composite
,”
ASME J. Tribol.
,
145
(
1
), p.
014501
.
35.
Hassan
,
S. F.
,
Al-Qutub
,
A. M.
,
Tun
,
K. S.
, and
Gupta
,
M.
,
2015
, “
Study of Wear Mechanisms of a Novel Magnesium Based Hybrid Nanocomposite
,”
ASME J. Tribol.
,
137
(
1
), p.
011601
.
36.
Moheimani
,
S. K.
,
Keshtgar
,
A.
,
Khademzadeh
,
S.
,
Tayebi
,
M.
,
Rajaee
,
A.
, and
Saboori
,
A.
,
2022
, “
Tribological Behaviour of AZ31 Magnesium Alloy Reinforced by Bimodal Size B4C After Precipitation Hardening
,”
J. Magnes. Alloy.
,
10
(
11
), pp.
3267
3280
.
37.
Suh
,
N. P.
,
1973
, “
Update on the Delamination Theory of Wear
,”
Wear
,
25
(
1
), pp.
111
124
.
You do not currently have access to this content.