Abstract

In this study, we evaluated the tribocorrosion and mechanical properties of nanotubes grown on a Ti–35Nb alloy. The nanotube arrays, approximately 2.0 µm thick, were formed through controlled anodization and annealing, composed of Ti and Nb oxides. The compact oxide film at the nanotube/substrate interface provided corrosion resistance, lubricating properties in worn tracks, and improved wear resistance. The nanotubes exhibited a lower coefficient of friction, hardness, and elastic modulus compared to untreated Ti–35Nb. The crystalline structure of the nanotubes and the oxide interface layer enhanced adhesion, preventing plastic deformation and improving tribocorrosion resistance.

References

1.
Cordeiro
,
J. M.
, and
Barão
,
V. A. R.
,
2017
, “
Is There Scientific Evidence Favoring the Substitution of Commercially Pure Titanium With Titanium Alloys for the Manufacture of Dental Implants?
,”
Mater. Sci. Eng. C
,
71
, pp.
1201
1215
.
2.
Kaur
,
M.
, and
Singh
,
K.
,
2019
, “
Review on Titanium and Titanium Based Alloys as Biomaterials for Orthopaedic Applications
,”
Mater. Sci. Eng. C
,
102
, pp.
844
862
.
3.
Li
,
T.
,
Gulati
,
K.
,
Wang
,
N.
,
Zhang
,
Z.
, and
Ivanovski
,
S.
,
2018
, “
Understanding and Augmenting the Stability of Therapeutic Nanotubes on Anodized Titanium Implants
,”
Mater. Sci. Eng. C
,
88
(
2017
), pp.
182
195
.
4.
Niinomi
,
M.
,
Kuroda
,
D.
,
Fukunaga
,
K. I.
,
Morinaga
,
M.
,
Kato
,
Y.
,
Yashiro
,
T.
, and
Suzuki
,
A.
,
1999
, “
Corrosion Wear Fracture of New β Type Biomedical Titanium Alloys
,”
Mater. Sci. Eng. A
,
263
(
2
), pp.
193
199
.
5.
Sadiq
,
K.
,
Stack
,
M. M.
, and
Black
,
R. A.
,
2015
, “
Wear Mapping of CoCrMo Alloy in Simulated Bio-Tribocorrosion Conditions of a Hip Prosthesis Bearing in Calf Serum Solution
,”
Mater. Sci. Eng. C
,
49
, pp.
452
462
.
6.
Bailey
,
R.
, and
Sun
,
Y.
,
2015
, “
Corrosion and Tribocorrosion Performance of Thermally Oxidized Commercially Pure Titanium in a 0.9% NaCl Solution
,”
J. Mater. Eng. Perform.
,
24
(
4
), pp.
1669
1678
.
7.
Siddaiah
,
A.
,
Mao
,
B.
,
Liao
,
Y.
, and
Menezes
,
P. L.
,
2020
, “
Effect of Laser Shock Peening on the Wear–Corrosion Synergistic Behavior of an AZ31B Magnesium Alloy
,”
ASME J. Tribol.
,
142
(
4
), p.
041701
.
8.
Diomidis
,
N.
,
Mischler
,
S.
,
More
,
N. S.
, and
Roy
,
M.
,
2012
, “
Tribo-Electrochemical Characterization of Metallic Biomaterials for Total Joint Replacement
,”
Acta Biomater.
,
8
(
2
), pp.
852
859
.
9.
Hacisalihoglu
,
I.
,
Samancioglu
,
A.
,
Yildiz
,
F.
,
Purcek
,
G.
, and
Alsaran
,
A.
,
2014
, “
Tribocorrosion Properties of Different Type Titanium Alloys in Simulated Body Fluid
,”
Wear
,
332–333
, pp.
679
686
.
10.
Huang
,
W.
,
Wang
,
Z.
,
Liu
,
C.
, and
Yu
,
Y.
,
2015
, “
Wear and Electrochemical Corrosion Behavior of Biomedical Ti–25Nb–3Mo–3Zr–2Sn Alloy in Simulated Physiological Solutions
,”
J. Bio- Tribo-Corrosion
,
1
(
1
), p.
1
.
11.
More
,
N. S.
,
Diomidis
,
N.
,
Paul
,
S. N.
,
Roy
,
M.
, and
Mischler
,
S.
,
2011
, “
Tribocorrosion Behavior of β Titanium Alloys in Physiological Solutions Containing Synovial Components
,”
Mater. Sci. Eng. C
,
31
(
2
), pp.
400
408
.
12.
Pina
,
V. G.
,
Dalmau
,
A.
,
Devesa
,
F.
,
Amigó
,
V.
, and
Muñoz
,
A. I.
,
2015
, “
Tribocorrosion Behavior of Beta Titanium Biomedical Alloys in Phosphate Buffer Saline Solution
,”
J. Mech. Behav. Biomed. Mater.
,
46
, pp.
59
68
.
13.
Du
,
C.
,
Bai
,
X.
, and
Yuan
,
C.
,
2021
, “
Fretting Tribocorrosion Behaviors of Marine Mooring Chain Steel 22MnCrNiMo in Artificial Seawater
,”
ASME J. Tribol.
,
143
(
7
), p.
071701
.
14.
Song
,
X.
,
Liu
,
Y.
,
Wang
,
X.
, and
Zhang
,
E.
,
2021
, “
Effect of Cu on the Tribocorrosion Behavior of Antibacterial CoCrMo Alloys in Simulated Biological Environment
,”
ASME J. Tribol.
,
143
(
7
), p.
074501
.
15.
Ji
,
X.
,
Zhao
,
J.
,
Jin
,
J.
,
Wu
,
J.
, and
Zhu
,
W.
,
2023
, “
Tribological Behavior of Cu-Based Bulk Metallic Glass Compared to Nickel–Aluminum Bronze in Air and 3.5% Sodium Chloride Solution
,”
ASME J. Tribol.
,
145
(
4
), p.
041701
.
16.
Minagar
,
S.
,
Wang
,
J.
,
Berndt
,
C. C.
,
Ivanova
,
E. P.
, and
Wen
,
C.
,
2013
, “
Cell Response of Anodized Nanotubes on Titanium and Titanium Alloys
,”
J. Biomed. Mater. Res., Part A
,
101 A
(
9
), pp.
2726
2739
.
17.
Roguska
,
A.
,
Pisarek
,
M.
,
Belcarz
,
A.
,
Marcon
,
L.
,
Holdynski
,
M.
,
Andrzejczuk
,
M.
, and
Janik-Czachor
,
M.
,
2016
, “
Improvement of the Bio-Functional Properties of TiO2 Nanotubes
,”
Appl. Surf. Sci.
,
388
, pp.
775
785
.
18.
Liu
,
G.
,
Du
,
K.
, and
Wang
,
K.
,
2016
, “
Surface Wettability of TiO2 Nanotube Arrays Prepared by Electrochemical Anodization
,”
Appl. Surf. Sci.
,
388
(
2015
), pp.
313
320
.
19.
Nasirpouri
,
F.
,
Yousefi
,
I.
,
Moslehifard
,
E.
, and
Khalil-Allafi
,
J.
,
2017
, “
Tuning Surface Morphology and Crystallinity of Anodic TiO2 Nanotubes and Their Response to Biomimetic Bone Growth for Implant Applications
,”
Surf. Coat. Technol.
,
315
, pp.
163
171
.
20.
Khudhair
,
D.
,
Amani Hamedani
,
H.
,
Gaburro
,
J.
,
Shafei
,
S.
,
Nahavandi
,
S.
,
Garmestani
,
H.
, and
Bhatti
,
A.
,
2017
, “
Enhancement of Electro-Chemical Properties of TiO2 Nanotubes for Biological Interfacing
,”
Mater. Sci. Eng. C
,
77
, pp.
111
120
.
21.
Luz
,
A. R.
,
Lepienski
,
C. M.
,
Henke
,
S. L.
,
Grandini
,
C. R.
, and
Kuromoto
,
N. K.
,
2017
, “
Effect of Microstructure on the Nanotube Growth by Anodic Oxidation on Ti-10Nb Alloy
,”
Mater. Res. Express
,
076408
(
4
), pp.
1
11
.
22.
Luz
,
A. R.
,
de Souza
,
G. B.
,
Lepienski
,
C. M.
,
Siqueira
,
C. J. M.
, and
Kuromoto
,
N. K.
,
2018
, “
Tribological Properties of Nanotubes Grown on Ti-35Nb Alloy by Anodization
,”
Thin Solid Films
,
660
, pp.
529
537
.
23.
Luz
,
A. R.
,
Santos
,
L. S.
,
Lepienski
,
C. M.
,
Kuroda
,
P. B.
, and
Kuromoto
,
N. K.
,
2018
, “
Characterization of the Morphology, Structure and Wettability of Phase Dependent Lamellar and Nanotube Oxides on Anodized Ti-10Nb Alloy
,”
Appl. Surf. Sci.
,
448
, pp.
30
40
.
24.
Rodrigues
,
N. R.
,
Alves
,
A. C.
,
Toptan
,
F.
, and
Rocha
,
L. A.
,
2018
, “
Preliminary Investigation on the Tribocorrosion Behaviour of Nanotubular Structured Ti6Al4V Surfaces
,”
Mater. Lett.
,
213
, pp.
214
217
.
25.
Alves
,
S. A.
,
Rossi
,
A. L.
,
Ribeiro
,
A. R.
,
Toptan
,
F.
,
Pinto
,
A. M.
,
Shokuhfar
,
T.
,
Celis
,
J. P.
, and
Rocha
,
L. A.
,
2018
, “
Improved Tribocorrosion Performance of Bio-Functionalized TiO2 Nanotubes Under Two-Cycle Sliding Actions in Artificial Saliva
,”
J. Mech. Behav. Biomed. Mater.
,
80
, pp.
143
154
.
26.
Alves
,
S. A.
,
Rossi
,
A. L.
,
Ribeiro
,
A. R.
,
Toptan
,
F.
,
Pinto
,
A. M.
,
Celis
,
J. P.
,
Shokuhfar
,
T.
, and
Rocha
,
L. A.
,
2017
, “
Tribo-Electrochemical Behavior of Bio-Functionalized TiO2 nanotubes in Artificial Saliva: Understanding of Degradation Mechanisms
,”
Wear
,
384–385
, pp.
28
42
.
27.
Ureña
,
J.
,
Tabares
,
E.
,
Tsipas
,
S.
,
Jiménez-Morales
,
A.
, and
Gordo
,
E.
,
2019
, “
Dry Sliding Wear Behaviour of β-Type Ti-Nb and Ti-Mo Surfaces Designed by Diffusion Treatments for Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
91
, pp.
335
344
.
28.
Ureña
,
J.
,
Tsipas
,
S.
,
Pinto
,
A. M.
,
Toptan
,
F.
,
Gordo
,
E.
, and
Jiménez-Morales
,
A.
,
2018
, “
Corrosion and Tribocorrosion Behaviour of β-Type Ti-Nb and Ti-Mo Surfaces Designed by Diffusion Treatments for Biomedical Applications
,”
Corros. Sci.
,
140
, pp.
51
60
.
29.
Wang
,
G.
,
Wang
,
S.
,
Yang
,
X.
,
Yu
,
X.
,
Wen
,
D.
,
Chang
,
Z.
, and
Zhang
,
M.
,
2021
, “
Fretting Wear and Mechanical Properties of Surface-Nanostructural Titanium Alloy Bone Plate
,”
Surf. Coat. Technol.
,
405
, p.
126512
.
30.
Zhang
,
F.
,
Yin
,
M.
, and
Li
,
Q.
,
2022
, “
Fretting Wear Behavior of Micro-Arc Oxidation Coating Fabricated on AZ91 Magnesium Alloy
,”
ASME J. Tribol.
,
144
(
4
), p.
041703
.
31.
Selvi
,
E.
,
Kaba
,
M.
,
Muhaffel
,
F.
,
Serdar Vanlı
,
A.
, and
Baydoğan
,
M.
,
2023
, “
Elevated Temperature Wear Behavior of AZ91 Magnesium Alloy After Micro-Arc Oxidation in Single and Dual Phase Electrolytes
,”
ASME J. Tribol.
,
145
(
7
), p.
071701
.
32.
Fellah
,
M.
,
Hezil
,
N.
,
Hussein
,
M. A.
,
Abdul Samad
,
M.
,
Touhami
,
M. Z.
,
Montagne
,
A.
,
Iost
,
A.
,
Obrosov
,
A.
, and
Weiss
,
S.
,
2019
, “
Preliminary Investigation on the Bio-Tribocorrosion Behavior of Porous Nanostructured β-Type Titanium Based Biomedical Alloys
,”
Mater. Lett.
,
257
, p.
126755
.
33.
Jang
,
S.-H.
,
Choe
,
H.-C.
,
Ko
,
Y.-M.
, and
Brantley
,
W. A.
,
2009
, “
Electrochemical Characteristics of Nanotubes Formed on Ti–Nb Alloys
,”
Thin Solid Films
,
517
(
17
), pp.
5038
5043
.
34.
Majchrowicz
,
A.
,
Roguska
,
A.
,
Majchrowicz
,
K.
,
Pisarek
,
M.
,
Hołdyński
,
M.
,
Bazarnik
,
P.
, and
Lewandowska
,
M.
,
2021
, “
Influence of Microstructural Features on the Growth of Nanotubular Oxide Layers on β-Phase Ti-24Nb-4Zr-8Sn and α + β-Phase Ti-13Nb-13Zr Alloys
,”
Surf. Coat. Technol.
,
425
, p.
127695
.
35.
Dhiflaoui
,
H.
,
Hajjaji
,
M. A.
,
Hajjaji
,
A.
,
Khezami
,
L.
,
Karrech
,
A.
,
Bessais
,
B.
,
Larbi
,
C.
,
Ben
,
A.
, and
Amlouk
,
M.
,
2023
, “
Enhanced Interfacial Adhesion of TiO2 Nanotubes Decorated With Ag Silver Nanoparticles Prepared by Photo-Reduction Process
,”
ASME J. Tribol.
,
145
(
9
), p.
091106
.
36.
Gulati
,
K.
,
Zhang
,
Y.
,
Di
,
P.
,
Liu
,
Y.
, and
Ivanovski
,
S.
,
2021
, “
Research to Clinics : Clinical Translation Considerations for Anodized Nano-Engineered Titanium Implants
,”
ACS Biomater. Sci. Eng.
,
8
(
10
), pp.
4077
91
.
37.
Fontes
,
A. C. C. A.
,
Sopchenski
,
L.
,
Laurindo
,
C. A. H.
,
Torres
,
R. D.
,
Popat
,
K. C.
, and
Soares
,
P.
,
2020
, “
Annealing Temperature Effect on Tribocorrosion and Biocompatibility Properties of TiO2 Nanotubes
,”
J. Bio-Tribo-Corrosion
,
6
(
2
), p.
64
.
38.
Çaha
,
I.
,
Alves
,
A. C.
,
Chirico
,
C.
,
Pinto
,
A. M. P.
,
Tsipas
,
S.
,
Gordo
,
E.
, and
Toptan
,
F.
,
2021
, “
A Promising Method to Develop TiO2-Based Nanotubular Surfaces on Ti-40Nb Alloy With Enhanced Adhesion and Improved Tribocorrosion Resistance
,”
Appl. Surf. Sci.
,
542
, p.
148658
.
39.
Majchrowicz
,
A.
,
Roguska
,
A.
,
Pisarek
,
M.
, and
Lewandowska
,
M.
,
2019
, “
Nanotubular Oxide Layers Formation on Ti–24Nb–4Zr–8Sn and Ti–13Zr–13Nb Alloys in the Ethylene Glycol-Based Electrolyte: The Role of Alloying Elements and Phase Composition
,”
Thin Solid Films
,
692
, p.
137635
.
40.
Bazzoni
,
A.
,
Mischler
,
S.
, and
Espallargas
,
N.
,
2013
, “
Tribocorrosion of Pulsed Plasma-Nitrided Cocrmo Implant Alloy
,”
Tribol. Lett.
,
49
(
1
), pp.
157
167
.
41.
Mischler
,
S.
,
2008
, “
Triboelectrochemical Techniques and Interpretation Methods in Tribocorrosion: A Comparative Evaluation
,”
Tribol. Int.
,
41
(
7
), pp.
573
583
.
42.
Diomidis
,
N.
,
Mischler
,
S.
,
More
,
N. S.
,
Roy
,
M.
, and
Paul
,
S. N.
,
2011
, “
Fretting-Corrosion Behavior of β Titanium Alloys in Simulated Synovial Fluid
,”
Wear
,
271
(
7–8
), pp.
1093
1102
.
43.
Bhushan
,
B.
,
2005
, “
Nanotribology and Nanomechanics
,”
Wear
,
259
(
7–12
), pp.
1507
31
.
44.
Fischer-Cripps
,
A. C.
,
2011
,
Nanoindentation
,
Springer Science & Business Media
,
New York
.
45.
Alves
,
S. A.
,
Rossi
,
A. L.
,
Ribeiro
,
A. R.
,
Werckmann
,
J.
,
Celis
,
J. P.
,
Rocha
,
L. A.
, and
Shokuhfar
,
T.
,
2017
, “
A First Insight on the Bio-Functionalization Mechanisms of TiO2 Nanotubes With Calcium, Phosphorous and Zinc by Reverse Polarization Anodization
,”
Surf. Coat. Technol.
,
324
, pp.
153
166
.
46.
Kulkarni
,
M.
,
Mazare
,
A.
,
Gongadze
,
E.
,
Perutkova
,
S.
,
Kralj-Iglic
,
V.
,
Milosev
,
I.
,
Schmuki
,
P.
,
Iglic
,
A.
, and
Mozetic
,
M.
,
2015
, “
Titanium Nanostructures for Biomedical Applications
,”
Nanotechnology
,
26
(
6
), p.
62002
.
47.
Ferreira
,
C. P.
,
Gonçalves
,
M. C.
,
Caram
,
R.
,
Bertazzoli
,
R.
, and
Rodrigues
,
C. A.
,
2013
, “
Applied Surface Science Effects of Substrate Microstructure on the Formation of Oriented Oxide Nanotube Arrays on Ti and Ti Alloys
,”
Appl. Surf. Sci.
,
285P
, pp.
226
234
.
48.
Farokhzadeh
,
K.
, and
Edrisy
,
A.
,
2016
, “
Transition Between Mild and Severe Wear in Titanium Alloys
,”
Tribol. Int.
,
94
, pp.
98
111
.
49.
Martin
,
É
,
Azzi
,
M.
,
Salishchev
,
G. A.
, and
Szpunar
,
J.
,
2010
, “
Influence of Microstructure and Texture on the Corrosion and Tribocorrosion Behavior of Ti-6Al-4V
,”
Tribol. Int.
,
43
(
5–6
), pp.
918
924
.
50.
Shugurov
,
A.
,
Panin
,
A.
,
Dmitriev
,
A.
, and
Nikonov
,
A.
,
2018
, “
The Effect of Crystallographic Grain Orientation of Polycrystalline Ti on Ploughing Under Scratch Testing
,”
Wear
,
408
, pp.
214
21
.
51.
Ehtemam-Haghighi
,
S.
,
Prashanth
,
K. G.
,
Attar
,
H.
,
Chaubey
,
A. K.
,
Cao
,
G. H.
, and
Zhang
,
L. C.
,
2016
, “
Evaluation of Mechanical and Wear Properties of Ti-XNb-7Fe Alloys Designed for Biomedical Applications
,”
Mater. Des.
,
111
(
Sept.
), pp.
592
599
.
52.
Luz
,
A. R. A. R.
,
de Lima
,
G. G. G. G.
,
Santos
,
E.
,
Pereira
,
B. L. B. L.
,
Sato
,
H. H. H. H.
,
Lepienski
,
C. M. C. M.
,
Lima
,
D. B. D. B.
,
Laurindo
,
C.
,
Grandini
,
C. R.
, and
Kuromoto
,
N. K. N. K.
,
2019
, “
Tribo-Mechanical Properties and Cellular Viability of Electrochemically Treated Ti-10Nb and Ti-20Nb Alloys
,”
J. Alloys Compd.
,
779
, pp.
129
139
.
53.
Sarraf
,
M.
,
Zalnezhad
,
E.
,
Bushroa
,
A. R.
,
Hamouda
,
A. M. S.
,
Rafieerad
,
A. R.
, and
Nasiri-Tabrizi
,
B.
,
2015
, “
Effect of Microstructural Evolution on Wettability and Tribological Behavior of TiO2 Nanotubular Arrays Coated on Ti-6Al-4V
,”
Ceram. Int.
,
41
(
6
), pp.
7952
7962
.
54.
Zhang
,
Q. Y.
,
Zhou
,
Y.
,
Wang
,
L.
,
Cui
,
X. H.
, and
Wang
,
S. Q.
,
2016
, “
Investigation on Tribo-Layers and Their Function of a Titanium Alloy During Dry Sliding
,”
Tribol. Int.
,
94
, pp.
541
549
.
55.
Fojt
,
J.
,
Filip
,
V.
, and
Joska
,
L.
,
2015
, “
On the Increasing of Adhesive Strength of Nanotube Layers on Beta Titanium Alloys for Medical Applications
,”
Appl. Surf. Sci.
,
355
, pp.
52
58
.
56.
Lee
,
Y. S.
,
Niinomi
,
M.
,
Nakai
,
M.
,
Narita
,
K.
, and
Cho
,
K.
,
2015
, “
Predominant Factor Determining Wear Properties of β-Type and (Α+β)-Type Titanium Alloys in Metal-to-Metal Contact for Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
41
, pp.
208
220
.
57.
Ehtemam-Haghighi
,
S.
,
Cao
,
G.
, and
Zhang
,
L. C.
,
2017
, “
Nanoindentation Study of Mechanical Properties of Ti Based Alloys With Fe and Ta Additions
,”
J. Alloys Compd.
,
692
, pp.
892
897
.
58.
Kunčická
,
L.
,
Kocich
,
R.
, and
Lowe
,
T. C.
,
2017
, “
Advances in Metals and Alloys for Joint Replacement
,”
Prog. Mater. Sci.
,
88
, pp.
232
280
.
59.
Ching
,
H. A.
,
Choudhury
,
D.
,
Nine
,
M. J.
, and
Abu Osman
,
N. A.
,
2014
, “
Effects of Surface Coating on Reducing Friction and Wear of Orthopaedic Implants
,”
Sci. Technol. Adv. Mater.
,
15
(
1
), p.
014402
.
60.
Xu
,
Y. N.
,
Liu
,
M. N.
,
Wang
,
M. C.
,
Oloyede
,
A.
,
Bell
,
J. M.
, and
Yan
,
C.
,
2015
, “
Nanoindentation Study of the Mechanical Behavior of TiO2 Nanotube Arrays
,”
J. Appl. Phys.
,
118
(
14
), p.
145301
.
61.
Crawford
,
G. A.
,
Chawla
,
N.
, and
Houston
,
J. E.
,
2009
, “
Nanomechanics of Biocompatible TiO2 Nanotubes by Interfacial Force Microscopy (IFM)
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
6
), pp.
580
587
.
62.
Crawford
,
G. A.
,
Chawla
,
N.
,
Das
,
K.
,
Bose
,
S.
, and
Bandyopadhyay
,
A.
,
2007
, “
Microstructure and Deformation Behavior of Biocompatible TiO2 Nanotubes on Titanium Substrate
,”
Acta Biomater.
,
3
(
3 SPEC. ISS.
), pp.
359
367
.
63.
Soares
,
P.
,
Mikowski
,
A.
,
Lepienski
,
C. M.
,
Santos
,
E.
,
Soares
,
G. A.
,
Swinka Filho
,
V.
, and
Kuromoto
,
N. K.
,
2008
, “
Hardness and Elastic Modulus of TiO2 Anodic Films Measured by Instrumented Indentation
,”
J. Biomed. Mater. Res. B. Appl. Biomater.
,
84
(
2
), pp.
524
530
.
You do not currently have access to this content.