Abstract

A two-dimensional finite element model was developed to investigate thermoelastic instability in multilayered friction discs with finite thickness, considering the deformation modes of the steel core. The model was used to simulate four unstable modes that can occur during the engagement process, and the Fourier reduction was applied to calculate the change in critical speed under these modes. Additionally, the influence of thermal physical parameters, including the elastic modulus, thermal expansion coefficient, Poisson’s ratio, and thermal conductivity of the friction pair, on thermoelastic instability was examined. The findings indicate that the critical speed of the friction pair is lower under the symmetric (friction disc)–antisymmetric (steel disc) mode compared to the other three modes. Consequently, the symmetric–antisymmetric mode is the first to be excited and serves as the dominant mode during thermoelastic instability. Moreover, there exists a specific wave number at which the system exhibits the lowest critical speed and poorest stability. Enhancing the thermal conductivity of the friction disc and steel disc, as well as reducing the thermal expansion coefficient of the steel disc and the elastic modulus and Poisson’s ratio of both discs, can improve the thermoelastic stability of the friction pair. Notably, the thermal expansion coefficient of the friction disc has minimal impact on thermoelastic instability. These results provide a theoretical foundation for exploring the relationship between the thermal failure of friction pairs and rotational speed, as well as optimizing overall performance design.

References

1.
Yi
,
Y. B.
,
Barber
,
J. R.
, and
Zagrodzki
,
P.
,
2000
, “
Eigenvalue Solution of Thermoelastic Instability Problems Using Fourier Reduction
,”
Proc. R. Soc. A
,
456
(
2003
), pp.
2799
2821
.
2.
Decuzzi
,
P.
,
Ciaverella
,
M.
, and
Monn
,
G.
,
2001
, “
Frictionally Excited Thermoelastic Instability in Multi-Disk Clutches
,”
ASME J. Tribol.
,
123
(
4
), pp.
865
871
.
3.
Stojanovic
,
N.
,
Abdullah
,
O. I.
,
Rakisheva
,
Z. B.
,
Lattieff
,
F. A.
, and
Hashim
,
E. T.
,
2020
, “
The Effect of Applied Pressure Function on Thermo-Elastic Problem in the Dry Friction Clutches
,”
J. Fail. Anal. Prev.
,
20
(
6
), pp.
2145
2152
.
4.
Abdullah
,
O. I.
,
Schlattmann
,
J.
,
Senatore
,
A.
, and
Al-Shabibi
,
A. M.
,
2018
, “
Investigation of Thermoelastic Problem of Multiple-Disc Friction Clutches Applying Different Thermal Loads
,”
Heat Mass Transfer
,
54
(
11
), pp.
3461
3471
.
5.
Liu
,
J.
,
Ke
,
L. L.
, and
Wang
,
Y. S.
,
2019
, “
Frictionally Excited Thermoelastic Dynamic Instability of Functionally Graded Materials
,”
Acta Mech. Sin.
,
35
(
1
), pp.
99
111
.
6.
Xia
,
D. M.
,
Xi
,
Y.
,
Zhu
,
W. X.
, and
Hua
,
B. B.
,
2016
, “
Effect of Material Properties and Structure of Frictional Pad on Thermoelastic Instability of Disc Brake
,”
J. Tongji Univ.
,
44
(
1
), pp.
119
127
.
7.
Xia
,
D. M.
,
Xi
,
Y.
,
Hua
,
B. B.
,
Zhou
,
Y. H.
, and
Zuo
,
J. Y.
,
2016
, “
Effect of Geometry and Material Properties of Brake Disc on Thermoelastic Instability of Sliding Frictional System
,”
J. Jilin Univ.
,
46
(
4
), pp.
1163
1174
.
8.
Qiao
,
Y. J.
,
Ciaverella
,
M.
,
Yi
,
Y. B.
, and
Wang
,
T.
,
2020
, “
Effect of Wear on Frictionally Excited Thermoelastic Instability: A Finite Element Approach
,”
J. Therm. Stresses
,
43
(
12
), pp.
1564
1576
.
9.
Qiao
,
Y. J.
,
Yi
,
Y. B.
,
Wang
,
T.
,
Cui
,
H. W.
, and
Lian
,
Z. S.
,
2022
, “
Effect of Wear on Thermoelastic Instability Involving Friction Pair Thickness in Automotive Clutches
,”
ASME J. Tribol.
,
144
(
4
), p.
041202
.
10.
Papangelo
,
A.
, and
Ciavarella
,
M.
,
2020
, “
Can Wear Completely Suppress Thermoelastic Instabilities?
,”
ASME J. Tribol.
,
142
(
5
), p.
051501
.
11.
Shpeneb
,
A. G.
,
2021
, “
The Influence of the Thermoelastic Instability on the Wear of Composite Brake Discs
,”
J. Frict. Wear
,
42
(
1
), pp.
30
37
.
12.
Wu
,
B. Z.
,
Qin
,
D. T.
,
Hu
,
J. J.
, and
Liu
,
Y.
,
2021
, “
Experimental Data Mining Research on Factors Influencing Friction Coefficient of Wet Clutch
,”
ASME J. Tribol.
,
143
(
12
), p.
121802
.
13.
Tsukanov
,
I. Y.
,
2022
, “
Thermoelastic Instability When Heterogeneous Materials With Different Properties Sliding Over a Rigid Surface
,”
Russ. Eng. Res.
,
42
(
1
), pp.
44
48
.
14.
Wan
,
Z. S.
,
Liu
,
X. D.
,
Shan
,
Y. C.
,
He
,
T.
,
Wang
,
H. X.
, and
Chen
,
G.
,
2019
, “
The Effect of Rigid Particle on Friction Properties of Automotive Disk Brake Based on a Local Modeling
,”
ASME J. Tribol.
,
141
(
4
), p.
041403
.
15.
Anderson
,
A. E.
, and
Knapp
,
R. A.
,
1990
, “
Hot Spotting in Automotive Friction Systems
,”
Wear
,
135
(
2
), pp.
319
337
.
16.
Lee
,
K.
, and
Barber
,
J. R.
,
1993
, “
Frictionally Excited Thermoelastic Instability in Automotive Disk Brakes
,”
ASME J. Tribol.
,
115
(
4
), pp.
607
614
.
17.
Jang
,
J. Y.
, and
Khonsari
,
M. M.
,
2003
, “
A Generalized Thermoelastic Instability Analysis
,”
Proc. R. Soc. A
,
459
(
2030
), pp.
309
329
.
18.
Zhao
,
J. X.
,
Yi
,
Y. B.
, and
Li
,
H. Y.
,
2015
, “
Effects of Frictional Material Properties on Thermoelastic Instability Deformation Modes
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
229
(
10
), pp.
1239
1246
.
19.
Ma
,
B.
,
Li
,
M. Y.
,
Li
,
H. Y.
,
Du
,
Q.
,
Li
,
H. Z.
, and
Yu
,
L.
,
2019
, “
Influence of Deformed Friction Components on the Thermoelastic Instability
,”
Trans. Beijing Inst. Technol.
,
39
(
3
), pp.
241
247
.
20.
Ma
,
B.
,
Zhao
,
J. X.
,
Chen
,
M.
,
Li
,
H. Y.
,
Ning
,
K. Y.
, and
Zhu
,
L. A.
,
2014
, “
Effect of Friction Material Properties on Thermoelastic Instability of Clutches
,”
J. Mech. Eng. Sci.
,
50
(
8
), pp.
111
118
.
21.
Ma
,
B.
,
Zhao
,
J. X.
,
Li
,
H. Y.
,
Ning
,
K. Y.
, and
He
,
C. P.
,
2014
, “
Effect of Clutches Structural Parameters on Thermalelastic Instability
,”
J. Jilin Univ.
,
44
(
4
), pp.
933
938
.
22.
Guo
,
F. L.
,
Yan
,
Y.
,
Hong
,
Y.
, and
Li
,
Y. D.
,
2020
, “
Multiscale Modeling: Prediction for Thermophysical Properties of Needled Carbon/Carbon Composite and Evaluation of Brake Disk System
,”
Mater. Today Commun.
,
22
, pp.
1
10
.
23.
Wang
,
Q. L.
,
Wang
,
J. M.
,
Cui
,
H. W.
,
Wang
,
J.
, and
Zhang
,
F.
,
2021
, “
Numerical Investigation Into Thermal Buckling of Friction Pairs in Hydro-Viscous Drive Under Nonlinear Radial Temperature Distribution
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
236
(
6
), pp.
1081
1090
.
24.
Xiong
,
C. B.
,
Chen
,
M.
, and
Yu
,
L. Y.
,
2020
, “
Analytical Model and Material Equivalent Methods for Steady State Heat Partition Coefficient Between Two Contact Discs in Multi-Disc Clutch
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
234
(
2–3
), pp.
857
871
.
25.
Majeed
,
M. H.
,
Kadhim
,
D. E.
,
Abdullah
,
O. I.
, and
Schlattmann
,
J.
,
2020
, “
Numerical Analysis of Thermal Problem in Dry Friction Clutches Based on the Interactive Design Approach
,”
Int. J. Interact. Des. Manuf.
,
14
(
3
), pp.
1091
1101
.
26.
Wu
,
J. P.
,
Ma
,
B.
,
Li
,
H. Y.
, and
Wang
,
L. Y.
,
2021
, “
The Temperature Field of Friction Disc in Wet Clutch Involving the Unconventional Heat Dissipation on the Contact Surface
,”
Tribol. Trans.
,
64
(
1
), pp.
1
9
.
27.
Wu
,
J. P.
,
Ma
,
B.
,
Li
,
H. Y.
, and
Li
,
M. Y.
,
2018
, “
The Effect of Circlip Induced Contact Pressure on the Temperature Distribution in Multi-Disc Clutches
,”
Int. J. Veh. Des.
,
77
(
3
), pp.
132
152
.
28.
Zelentsov
,
V. B.
, and
Mitrin
,
B. I.
,
2019
, “
Thermoelastic Instability in the Quasi-Static Coupled Thermoelasticity Problem Dealt With the Sliding Contact with Frictional Heating
,”
Mech. Solids
,
54
(
1
), pp.
58
69
.
29.
Zhao
,
J. X.
,
Ma
,
B.
,
Li
,
H. Y.
,
Zhu
,
L.
,
Han
,
M.
, and
Zhu
,
L. A.
,
2015
, “
Thermoelastic Stability of Wet Clutches During Engaging Peocess
,”
J. Jilin Univ.
,
45
(
1
), pp.
22
28
.
30.
Zhao
,
J. X.
,
2014
,
Research on Thermoelastic Instability of Shifting Clutches in the Process of Engagement
,
Beijing Institute of Technology
,
Beijing
.
31.
Chen
,
Z.
,
Yi
,
Y. B.
,
Bao
,
K.
, and
Zhao
,
J. X.
,
2019
, “
Numerical Analysis of the Coupling Between Frictionally Excited Thermoelastic Instability and Thermal Buckling in Automotive Clutches
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
233
(
1
), pp.
178
187
.
32.
Zhang
,
Z. G.
,
Zou
,
L.
,
Liu
,
H.
,
Chen
,
Y. L.
, and
Zhang
,
B. Z.
,
2021
, “
Effects of Operating and Material Parameters on the Thermal Characteristics of a Wet Clutch
,”
Adv. Mech. Eng.
,
13
(
7
), pp.
1
12
.
33.
Li
,
J.
,
Zhang
,
Y. X.
,
Wang
,
X. Y.
,
Gu
,
J. L.
,
Chen
,
C.
, and
Tao
,
L.
,
2020
, “
Influence upon Temperature Field Distribution With Straight Grooves Parameters of Clutch Friction Disk
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
234
(
9
), pp.
2263
2278
.
34.
Koranteng
,
K.
,
Shaahu
,
J. S.
,
Chengnan
,
M
,
Li
,
H. Y.
, and
Yi
,
Y. B.
,
2021
, “
The Performance of Cu-Based Friction Material in Dry Clutch Engagement
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
235
(
6
), pp.
1114
1123
.
35.
Liu
,
Y. J.
,
Chen
,
M.
,
Yu
,
L.
,
Wang
,
L.
, and
Feng
,
Y. Q.
,
2021
, “
Influence of Material Parameters on the Contact Pressure Characteristics of a Multi-Disc Clutch
,”
Materials
,
14
(
21
), pp.
1
14
.
36.
Jabbar
,
N. A.
,
Hussain
,
I. Y.
, and
Abdullah
,
O. I.
,
2021
, “
Thermal and Thermoelastic Problems in Dry Friction Clutch: A Comprehensive Review
,”
Heat Transfer
,
50
(
8
), pp.
7855
7878
.
37.
Zhu
,
M. Y.
,
Liu
,
X. T.
,
Kan
,
F. C.
, and
You
,
Z.
,
2021
, “
Life Cycle Prediction and Evaluation of Clutch Friction Plate Considering Wear Models and Thermal Stress
,”
ASME J. Tribol.
,
143
(
4
), p.
041701
.
You do not currently have access to this content.