Abstract

In-cylinder internal combustion engine parasitic frictional losses continue to be an area of interest to improve efficiency and reduce emissions. This study investigates the frictional behavior at the oil control ring–cylinder liner conjunction of lubricants with anti-wear additives, varying dispersant concentration, and a range of friction modifiers. Experiments are conducted at a range of temperatures on a cylinder liner with a nickel silicon carbide coating. A novel motored reciprocating tribometer, with a complete three-piece oil control ring and cylinder liner, was used to isolate the friction at the segment–liner interfaces. Four lubricants were tested, three with the same 3% dispersant concentration and 1% zinc dialkyl dithiophosphate (ZDDP) anti-wear additive: the first with no friction modifier, the second with inorganic friction modifier (molybdenum dithiocarbamates), and the third with organic friction modifier (amide). A fourth lubricant with an organic friction modifier with a 9% dispersant concentration was tested to compare the effect of the level of dispersant with the friction modifier. Results indicate that the inorganic friction modifier reduces friction comparatively to the other lubricants, showing the importance of friction modifier selection with anti-wear additives.

References

1.
Holmberg
,
K.
,
Andersson
,
P.
, and
Erdemir
,
A.
,
2012
, “
Global Energy Consumption Due to Friction in Passenger Cars
,”
Tribol. Int.
,
47
, pp.
221
234
.
2.
Forder
,
M. D.
,
Morris
,
N.
,
King
,
P.
,
Balakrishnan
,
S.
, and
Howell-Smith
,
S.
,
2022
, “
An Experimental Investigation of Low Viscosity Lubricants on Three Piece Oil Control Rings Cylinder Liner Friction
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
236
(
11), pp.
2261
2271
.
3.
ISO 6627:2011(En), Internal Combustion Engines—Piston Rings—Expander/Segment Oil-Control Rings
https://www.iso.org/obp/ui/#iso:std:iso:6627:ed-2:v1:en. Accessed August 17, 2022.
4.
Kligerman
,
Y.
,
Etsion
,
I.
, and
Shinkarenko
,
A.
,
2005
, “
Improving Tribological Performance of Piston Rings by Partial Surface Texturing
,”
ASME J. Tribol.
,
127
(
3
), pp.
632
638
.
5.
Etsion
,
I.
, and
Sher
,
E.
,
2009
, “
Improving Fuel Efficiency With Laser Surface Textured Piston Rings
,”
Tribol. Int.
,
42
(
4
), pp.
542
547
.
6.
Ezhilmaran
,
V.
,
Vasa
,
N. J.
,
Krishnan
,
S.
, and
Vijayaraghavan
,
L.
,
2021
, “
Femtosecond Pulsed Ti:Sapphire Laser-Assisted Surface Texturing on Piston Ring and Its Tribology Characterization
,”
ASME J. Tribol.
,
143
(
4
), p.
041801
.
7.
Gore
,
M.
,
Morris
,
N.
,
Rahmani
,
R.
,
Rahnejat
,
H.
,
King
,
P. D.
, and
Howell-Smith
,
S.
,
2017
, “
A Combined Analytical-Experimental Investigation of Friction in Cylinder Liner Inserts Under Mixed and Boundary Regimes of Lubrication
,”
Lubr. Sci.
,
29
(
5
), pp.
293
316
.
8.
Umer
,
J.
,
Morris
,
N. J.
,
Rahmani
,
R.
,
Rahnejat
,
H.
,
Howell-Smith
,
S.
, and
Balakrishnan
,
S.
,
2021
, “
Effect of Dispersant Concentration With Friction Modifiers and Anti-Wear Additives on the Tribofilm Composition and Boundary Friction
,”
ASME J. Tribol.
,
143
(
11
),
111901
.
9.
Graham
,
J.
,
Spikes
,
H.
, and
Korcek
,
S.
,
2001
, “
The Friction Reducing Properties of Molybdenum Dialkyldithiocarbamate Additives: Part I—Factors Influencing Friction Reduction
,”
Tribol. Trans.
,
44
(
4
), pp.
626
636
.
10.
De Barros
,
M. I.
,
Bouchet
,
J.
,
Raoult
,
I.
,
Le Mogne
,
T.
,
Martin
,
J. M.
,
Kasrai
,
M.
, and
Yamada
,
Y.
,
2003
, “
Friction Reduction by Metal Sulfides in Boundary Lubrication Studied by XPS and XANES Analyses
,”
Wear
,
254
(
9
), pp.
863
870
.
11.
Grossiord
,
C.
,
Varlot
,
K.
,
Martin
,
J.-M.
,
Le Mogne
,
T.
,
Esnouf
,
C.
, and
Inoue
,
K.
,
1998
, “
MoS2 Single Sheet Lubrication by Molybdenum Dithiocarbamate
,”
Tribol. Int.
,
31
(
12
), pp.
737
743
.
12.
Topolovec Miklozic
,
K.
,
Graham
,
J.
, and
Spikes
,
H.
,
2001
, “
Chemical and Physical Analysis of Reaction Films Formed by Molybdenum Dialkyl-Dithiocarbamate Friction Modifier Additive Using Raman and Atomic Force Microscopy
,”
Tribol. Lett.
,
11
(
2
), pp.
71
81
.
13.
Tang
,
Z.
, and
Li
,
S.
,
2014
, “
A Review of Recent Developments of Friction Modifiers for Liquid Lubricants (2007–Present)
,”
Curr. Opin. Solid State Mater. Sci.
,
18
(
3
), pp.
119
139
.
14.
Levine
,
O.
, and
Zisman
,
W. A.
,
1957
, “
Physical Properties of Monolayers Adsorbed at the Solid–Air Interface. I. Friction and Wettability of Aliphatic Polar Compounds and Effect of Halogenation
,”
J. Phys. Chem.
,
61
(
8
), pp.
1068
1077
.
15.
Spikes
,
H.
,
2004
, “
The History and Mechanisms of ZDDP
,”
Tribol. Lett.
,
17
(
3
), pp.
469
489
.
16.
Bahari
,
A.
,
Lewis
,
R.
, and
Slatter
,
T.
,
2018
, “
Friction and Wear Phenomena of Vegetable Oil–Based Lubricants With Additives at Severe Sliding Wear Conditions
,”
Tribol. Trans.
,
61
(
2
), pp.
207
219
.
17.
Taylor
,
L. J.
, and
Spikes
,
H. A.
, 2003 “
Friction-Enhancing Properties of ZDDP Antiwear Additive: Part I—Friction and Morphology of ZDDP Reaction Films
,”
Tribol. Trans.
,
46
(
3
), pp.
303
309
.
18.
Ueda
,
M.
,
Kadiric
,
A.
, and
Spikes
,
H.
,
2020
, “
ZDDP Tribofilm Formation on Non-Ferrous Surfaces
,”
Tribol. Online
,
15
(
5
), pp.
318
331
.
19.
Fry
,
B. M.
,
Moody
,
G.
,
Spikes
,
H. A.
, and
Wong
,
J. S. S.
,
2020
, “
Adsorption of Organic Friction Modifier Additives
,”
Langmuir
,
36
(
5
), pp.
1147
1155
.
20.
Massoud
,
T.
,
De Matos
,
R. P.
,
Le Mogne
,
T.
,
Belin
,
M.
,
Cobian
,
M.
,
Thiébaut
,
B.
,
Loehlé
,
S.
,
Dahlem
,
F.
, and
Minfray
,
C.
,
2020
, “
Effect of ZDDP on Lubrication Mechanisms of Linear Fatty Amines Under Boundary Lubrication Conditions
,”
Tribol. Int.
,
141
, p.
105954
.
21.
Ratoi
,
M.
,
Niste
,
V. B.
,
Alghawel
,
H.
,
Suen
,
Y. F.
, and
Nelson
,
K.
,
2013
, “
The Impact of Organic Friction Modifiers on Engine Oil Tribofilms
,”
RSC Adv.
,
4
(
9
), pp.
4278
4285
.
22.
Miklozic
,
K.
,
Forbus
,
R.
, and
Spikes
,
H.
,
2007
, “
Performance of Friction Modifiers on ZDDP-Generated Surfaces
,”
Tribol. Trans.
,
50
(
3
), pp.
328
335
.
23.
Zhang
,
J.
,
Yamaguchi
,
E.
, and
Spikes
,
H.
,
2014
, “
The Antagonism Between Succinimide Dispersants and a Secondary Zinc Dialkyl Dithiophosphate
,”
Tribol. Trans.
,
57
(
1
), pp.
57
65
.
24.
Inoue
,
K.
, and
Watanabe
,
H.
,
1983
, “
Interactions of Engine Oil Additives
,”
ASLE Trans.
,
26
(
2
), pp.
189
199
.
25.
Plaza
,
S.
,
1987
, “
The Effect of Other Lubricating Oil Additives on the Adsorption of Zinc Di-Isobutyldithiophosphate on Fe and γ—Fe2O3 Powders
,”
ASLE Trans.
,
30
(
2
), pp.
241
247
.
26.
Ramakumar
,
S. S. V.
,
Rao
,
A. M.
, and
Srivastava
,
S. P.
,
1992
, “
Studies on Additive-Additive Interactions: Formulation of Crankcase Oils Towards Rationalization
,”
Wear
,
156
(
1
), pp.
101
120
.
27.
De Barros Bouchet
,
M. I.
,
Martin
,
J. M.
,
Le Mogne
,
T.
,
Bilas
,
P.
,
Vacher
,
B.
, and
Yamada
,
Y.
,
2005
, “
Mechanisms of MoS2 Formation by MoDTC in Presence of ZnDTP: Effect of Oxidative Degradation
,”
Wear
,
258
(
11
), pp.
1643
1650
.
28.
Martin
,
J.
,
Grossiord
,
C.
,
Varlot
,
K.
,
Vacher
,
B.
, and
Igarashi
,
J.
,
2000
, “
Synergistic Effects in Binary Systems of Lubricant Additives: A Chemical Hardness Approach
,”
Tribol. Lett.
,
8
(
4
), pp.
193
201
.
29.
Morina
,
A.
,
Neville
,
A.
,
Priest
,
M.
, and
Green
,
J. H.
,
2006
, “
ZDDP and MoDTC Interactions in Boundary Lubrication—The Effect of Temperature and ZDDP/MoDTC Ratio
,”
Tribol. Int.
,
39
(
12
), p.
1545
1557
.
30.
Morina
,
A.
, and
Neville
,
A.
,
2007
, “
Understanding the Composition and Low Friction Tribofilm Formation/Removal in Boundary Lubrication
,”
Tribol. Int.
,
40
(
10
), pp.
1696
1704
.
31.
Ishimori
,
S.
,
Shimizu
,
M.
,
Honda
,
S.
,
Otsuka
,
S.
, and
Toyoda
,
M.
,
1977
, “
ニッケル-炭化けい素複合めっき技術の工業化
,”
J. Met. Finish. Soc. Jpn.
,
28
(
10
), pp.
508
512
.
32.
Howell-Smith
,
S. J.
,
2011
, “
Tribological Optimisation of the Internal Combustion Engine Piston to Bore Conjunction Through Surface Modification
,”
Thesis
,
Loughborough University
.
33.
Zhang
,
B.
,
Ma
,
X.
,
Liu
,
L.
,
Yu
,
H.
,
Morina
,
A.
, and
Lu
,
X.
,
2023
, “
Study on the Sliding Wear Map of Cylinder Liner—Piston Ring Based on Various Operating Parameters
,”
Tribol. Int.
,
186
, p.
108632
.
34.
Leighton
,
M.
,
Morris
,
N.
,
Gore
,
M.
,
Rahmani
,
R.
,
Rahnejat
,
H.
, and
King
,
P.
,
2016
, “
Boundary Interactions of Rough Non-Gaussian Surfaces
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
230
(
11
), pp.
1359
1370
.
35.
Liu
,
C.
,
Lu
,
Y.
,
Zhang
,
Y.
,
Li
,
S.
,
Kang
,
J.
, and
Müller
,
N.
,
2018
, “
Numerical Study on the Tribological Performance of Ring/Liner System With Consideration of Oil Transport
,”
ASME J. Tribol.
,
141
(
1
), p.
011701
.
36.
Taylor
,
L. J.
, and
Spikes
,
H. A.
,
2003
, “
Friction-Enhancing Properties of ZDDP Antiwear Additive: Part I—Friction and Morphology of ZDDP Reaction Films
,”
Tribol. Trans.
,
46
(
3
), pp.
303
309
37.
Umer
,
J.
,
Morris
,
N.
,
Leighton
,
M.
,
Rahmani
,
R.
,
Balakrishnan
,
S.
, and
Rahnejat
,
H.
,
2019
, “
Nano and Microscale Contact Characteristics of Tribofilms Derived From Fully Formulated Engine Oil
,”
Tribol. Int.
,
131
, pp.
620
630
.
38.
Sato
,
K.
,
Watanabe
,
S.
, and
Sasaki
,
S.
,
2022
, “
High Friction Mechanism of ZDDP Tribofilm Based on In Situ AFM Observation of Nano-Friction and Adhesion Properties
,”
Tribol. Lett.
,
70
(
3
), p.
94
.
39.
Topolovec-Miklozic
,
K.
,
Lockwood
,
F.
, and
Spikes
,
H.
,
2008
, “
Behaviour of Boundary Lubricating Additives on DLC Coatings
,”
Wear
,
265
(
11
), pp.
1893
1901
.
40.
Haque
,
T.
,
Morina
,
A.
,
Neville
,
A.
,
Kapadia
,
R.
, and
Arrowsmith
,
S.
,
2007
, “
Non-Ferrous Coating/Lubricant Interactions in Tribological Contacts: Assessment of Tribofilms
,”
Tribol. Int.
,
40
(
10
), pp.
1603
1612
.
You do not currently have access to this content.