Abstract

The wet clutch, a crucial component of the vehicle transmission system, experiences high-frequency impact and friction between the friction plate and the steel plate under high-speed separation conditions. This leads to a significant increase in drag torque, which is detrimental to the transmission efficiency and reliability of the high-speed wet clutch. This article aims to reduce the high-speed drag torque in a no-load wet clutch by optimizing the oil groove shape on the surface of the friction plate. Initially, a theoretical model of high-speed drag torque for the friction plate with arbitrary oil groove shape is established. Subsequently, a low-drag oil groove shape optimization model is proposed by establishing design parameters, constraint conditions, and an objective function, combined with an experiment design method, approximation modeling, and a global search optimization method. Finally, the stiffness and damping coefficients of the clearance flow field and the drag torque with the optimized oil groove shape are calculated. The simulation results and the proposed optimization method are validated through experiments. The experiment indicates that a friction plate with the optimized oil groove shape can significantly decrease high-speed drag torque, demonstrating strong practical engineering value.

References

1.
Naunheimer
,
H.
,
Bertsche
,
B.
,
Ryborz
,
J.
, and
Novak
,
W.
,
2011
, “Layout and Design of Multi-Plate Clutches,”
Automotive Transmissions: Fundamentals, Selection, Design and Application
,
Springer-Verlag
,
Berlin
, pp.
344
346
.
2.
Aphale
,
C. R.
,
Cho
,
J.
,
Schultz
,
W. W.
,
Ceccio
,
S. L.
,
Yoshioka
,
T.
, and
Hiraki
,
H.
,
2006
, “
Modeling and Parametric Study of Torque in Open Clutch Plates
,”
ASME J. Tribol.
,
128
(
2
), pp.
422
430
.
3.
Schade
,
C. W.
,
1971
, “
Effects of Transmission Fluid on Clutch Performance
,”
SAE Technical Paper 710734
. http://doi.org/10.4271/710734
4.
Lloyd
,
F. A.
,
1974
, “
Parameters Contributing to Power Loss in Disengaged Wet Clutches
,”
SAE
Technical Paper 740676
. http://doi.org/10.4271/740676
5.
Kitabayashi
,
H.
,
Li
,
C. Y.
, and
Hiraki
,
H.
,
2003
, “
Analysis of the Various Factors Affecting Drag Torque in Multiple-Plate Wet Clutches
,”
SAE Trans.
,
112
(
4
), pp.
1840
1845
.
6.
Takagi
,
Y.
,
Nakata
,
H.
,
Okano
,
Y.
,
Miyagawa
,
M.
, and
Katayama
,
N.
,
2011
, “
Effect of Two-Phase Flow on Drag Torque in a Wet Clutch
,”
J. Adv. Res. Phys.
,
2
(
2
), p.
021108
.
7.
Hu
,
J.
,
Peng
,
Z.
, and
Wei
,
C.
,
2012
, “
Experimental Research on Drag Torque for Single-Plate Wet Clutch
,”
ASME J. Tribol.
,
134
(
1
), p.
014502
.
8.
Neupert
,
T.
,
Benke
,
E.
, and
Bartel
,
D.
,
2018
, “
Parameter Study on the Influence of a Radial Groove Design on the Drag Torque of Wet Clutch Discs in Comparison With Analytical Models
,”
Tribol. Int.
,
119
, pp.
809
821
.
9.
Yuan
,
Y.
,
Liu E
,
A.
,
Hill J
,
C.
, and
Zou
,
Q.
,
2007
, “
An Improved Hydrodynamic Model for Open Wet Transmission Clutches
,”
ASME J. Fluids Eng.
,
129
(
3
), pp.
333
337
.
10.
Iqbal
,
S.
,
Albender
,
F.
,
Pluymers
,
B.
, and
Desmet
,
W.
,
2013
, “
Model for Predicting Drag Torque in Open Multi-Disks Wet Clutches
,”
ASME J. Fluids Eng.
,
136
(
2
), p.
021103
.
11.
Pahlovy
,
S. A.
,
Mahmud
,
S. F.
,
Kubota
,
M.
,
Ogawa
,
M.
, and
Takakura
,
N.
,
2014
, “
Multiphase Drag Modeling for Prediction of the Drag Torque Characteristics in Disengaged Wet Clutches
,”
SAE Int. J. Commer. Veh.
,
7
(
2
), pp.
441
447
.
12.
Pahlovy
,
S. A.
,
Mahmud
,
S. F.
,
Kubota
,
M.
,
Ogawa
,
M.
, and
Takakura
,
N.
,
2016
, “
New Development of a Gas Cavitation Model for Evaluation of Drag Torque Characteristics in Disengaged Wet Clutches
,”
SAE Int. J. Eng.
,
9
(
3
), pp.
1910
1915
.
13.
Xiang
,
C.
,
Zhang
,
Y.
, and
Liu
,
H.
,
2013
, “
Research on Drag Torque of High Relative Speed Open Wet Clutch of Vehicle
,”
J. Mech. Eng.
,
49
(
20
), pp.
71
77
.
14.
Liu
,
J.
,
Ma
,
B.
, and
Li
,
H.
,
2015
, “
Influences of Surface Grooves on Friction Plate on Drag Torque of Wet Clutch
,”
J. Huazhong Univ. Sci. Technol. (Natl Sci. Ed.)
,
43
(
2
), pp.
35
39
.
15.
Zhang
,
L.
,
Wei
,
C.
, and
Hu
,
J.
,
2019
, “
Model for the Prediction of Drag Torque Characteristics in Wet Clutch With Radial Grooves
,”
Proc. Inst. Mech. Eng. D J. Automobile Eng.
,
233
(
12
), pp.
3043
3056
.
16.
Aphale
,
C. R.
,
Schultz
,
W. W.
, and
Ceccio
,
S. L.
,
2010
, “
The Influence of Grooves on the Fully Wetted and Aerated Flow Between Open Clutch Plates
,”
ASME J. Tribol.
,
132
(
1
), p.
011104
.
17.
Aphale
,
C. R.
,
Schultz
,
W. W.
, and
Ceccio
,
S. L.
,
2011
, “
Aeration in Lubrication With Application to Drag Torque Reduction
,”
ASME J. Tribol.
,
133
(
3
), p.
031701
.
18.
Ryu
,
J. S.
,
2014
, “
Effect of Angle and Density of Grooves Between Friction Plate Segments on Drag Torque in Wet Clutch of Automatic Transmission
,”
J. KSTLE
,
30
(
2
), pp.
71
76
.
19.
Ryu
,
J. S.
,
2014
, “
Effects of Friction Plate Area and Clearance on the Drag Torque in a Wet Clutch for an Automatic Transmission
,”
J. KSTLE
,
30
(
6
), pp.
337
342
.
20.
Wu
,
W.
,
Xiong
,
Z.
,
Hu
,
J.
, and
Yuan
,
S.
,
2015
, “
Application of CFD to Model Oil-Air Flow in a Grooved Two-Disc System
,”
Int. J. Heat Mass Transfer
,
91
, pp.
293
301
.
21.
Xiong
,
Z.
,
Yuan
,
S.
,
Wu
,
W.
, and
Peng
,
Z.
,
2016
, “
Numerical Investigation of the Air-Oil Two-Phase Flow Inside a Wet Clutch
,”
J. Mech. Eng.
,
52
(
16
), pp.
117
123
.
22.
Mahmud
,
S.
,
Pahlovy
,
S.
,
Kubota
,
M.
,
Ogawa
,
M.
, and
Takakura
,
N.
,
2016
, “
Multi-Phase Simulation for Studying the Effect of Different Groove Profiles on the Drag Torque Characteristics of Transmission Wet Clutch
,”
SAE
Technical Paper 2016-01-1144
. http://doi.org/10.4271/2016-01-1144
23.
Asai
,
K.
, and
Ito
,
T.
,
2018
, “
Effect of Facing Groove Design on Drag Torque of Automatic Transmission Wet Clutches
,”
SAE
Technical Paper 2018-01-0400
. http://doi.org/10.4271/2018-01-0400
24.
Oerleke
,
C.
,
2000
, “
Einflußgrößen auf die Schleppmomente Schnellaufender Lamellenkupplungen in Automatgetrieben
,”
Doctoral dissertation
,
Universität der Bundeswehr Hamburg
,
Hamburg, Germany
.
25.
Mahmud
,
S
, and
Pahlovy
,
S.
,
2015
, “
Investigation on Torque Jump Up and Vibration at High Rotation Speed of a Wet Clutch
,”
SAE
Technical Paper 2015-01-2184
. http://doi.org/10.4271/2015-01-2184
26.
Pahlovy
,
S
,
Mahmud
,
S
,
Kubota
,
M
,
Ogawa
,
M.
, and
Takakura
,
N.
,
2017
, “
Development of an Analytical Model for Prediction of Drag Torque Characteristics of Disengaged Wet Clutches in High Speed Region
,”
SAE
Technical Paper 2017-01-1132
. http://doi.org/10.4271/2017-01-1132
27.
Zhou
,
X.
,
Wu
,
P.
,
Yang
,
C.
,
Xu
,
J.
,
Shang
,
X. B.
, and
Wang
,
Z. S.
,
2019
, “
Simulation and Experimental Study on the Drag Torque Characteristics of Wet Clutches in High Speed Condition
,”
Automot. Eng.
,
41
(
9
), pp.
1056
1064
.
28.
Hou
,
S.
,
Hu
,
J.
, and
Peng
,
Z.
,
2017
, “
Experimental Investigation on Unstable Vibration Characteristics of Plates and Drag Torque in Open Multiplate Wet Clutch at High Circumferential Speed
,”
ASME J. Fluids Eng.
,
139
(
11
), p.
111103
.
29.
Zhang
,
M.
,
Liu
,
Y.
,
Liu
,
T.
,
Xu
,
X.
,
Xu
,
J.
, and
Zhang
,
Y.
,
2023
, “
The Drag Characteristics Prediction of Multi-Plate Frictional Wet Clutches in Vehicle Transmissions
,”
J. Mech. Sci. Technol.
,
37
(
7
), pp.
3249
3259
.
30.
Hu
,
J.
,
Hou
,
S.
, and
Wei
,
C.
,
2018
, “
Drag Torque Modeling at High Circumferential Speed in Open Wet Clutches Considering Plate Wobble and Mechanical Contact
,”
Tribol. Int.
,
124
, pp.
102
116
.
31.
Zhang
,
L.
,
Wei
,
C.
,
Hu
,
J.
, and
Hu
,
Q.
,
2019
, “
Influences of Lubrication Flow Rates on Critical Speed of Rub-Impact at High Circumferential Velocities in No-Load Multi-Plate Wet Clutch
,”
Tribol. Int.
,
140
, p.
105847
.
32.
Zhang
,
L.
,
Wei
,
C.
, and
Hu
,
J.
,
2020
, “
Optimization Design of Low Drag Torque Parameters of High-Speed Multi-Plate Wet Clutch
,”
Automot. Eng.
,
42
(
8
), pp.
1074
1081
.
33.
Kawabata
,
N.
,
1988
, “
A Study on the Numerical Analysis of Fluid Film Lubrication by the Boundary-Fitted Coordinates System: Fundamental Equations of df Method and the Case of Incompressible Lubrication
,”
JSME Int. J. Ser. 3 Vib. Control Eng. Eng. Ind.
,
31
(
1
), pp.
107
113
.
34.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2005
, “
An Efficient Algorithm for Constructing Optimal Design of Computer Experiments
,”
J. Stat. Plan. Inference
,
134
(
1
), pp.
268
287
.
35.
Kavuri S
,
N.
, and
Venkatasubramanian
,
V.
,
1993
, “
Using Fuzzy Clustering With Ellipsoidal Units in Neural Networks for Robust Fault Classification
,”
Comput. Chem. Eng.
,
17
(
8
), pp.
765
784
.
36.
Konak
,
A.
,
Coit D
,
W.
, and
Smith A
,
E.
,
2006
, “
Multi-Objective Optimization Using Genetic Algorithms: A Tutorial
,”
Reliab. Eng. Syst. Saf.
,
91
(
9
), pp.
992
1007
.
You do not currently have access to this content.