Abstract

Micro-scale gas lubrication has been studied for several decades, with extensive research on non-equilibrium flow effects like velocity slip and thermal creep. However, the Knudsen maximum effect in micro-scale gas lubrication has not been reported yet. To address this, we analyzed the load capacity characteristics of slider bearings with ultra-thin film gas lubrication equations derived from the linearized Boltzmann-Bathnagar–Gross–Krook model equation (Fukui–Kaneko lubrication model) under the condition of constant bearing number. Our study reveals that there exists a maximum value of load capacity for slider bearings when the reference Knudsen number is about unity. This happens because the dimensionless mass flowrate of micro-scale gas flows has a minimum value when the reference Knudsen number approaches unity. Understanding the Knudsen maximum effect is crucial when designing micro-nano devices related to gas lubrication, as it implies that there exists an optimum clearance for maximum load capacity.

References

1.
Sone
,
Y.
,
2007
,
Molecular Gas Dynamics Theory, Techniques, and Applications
,
Birkhauser
,
Boston, MA
.
2.
Gu
,
X.
,
Zhang
,
H.
, and
Emerson
,
D. R.
,
2016
, “
A New Extended Reynolds Equation for Gas Bearing Lubrication Based on the Method of Moments
,”
Microfluid. Nanofluidics
,
20
(
1
), p.
23
.
3.
Wu
,
L.
,
2008
, “
A Slip Model for Rarefied Gas Flows at Arbitrary Knudsen Number
,”
Appl. Phys. Lett.
,
93
(
25
), p.
253103
.
4.
Yang
,
Q.
,
Zhang
,
H.
, and
Liu
,
Y.
,
2016
, “
Improved Modified Reynolds Equation for Thin Film Gas Lubrication From an Extended Slip Velocity Boundary Condition
,”
Microsyst. Technol.
,
22
(
12
), p.
2869
2875
.
5.
Diab
,
N. A.
, and
Lakkis
,
I. A.
,
2016
, “
Investigation of the Squeeze Film Dynamics Underneath a Microstructure With Large Oscillation Amplitudes and Inertia Effects
,”
ASME J. Tribol.
,
138
(
3
), p.
050801
.
6.
White
,
J.
,
2015
, “
Combined Effects of Surface Roughness and Rarefaction in the Region Between High Wave Number-Limited and High Bearing Number-Limited Lubricant Flows
,”
ASME J. Tribol.
,
137
(
1
), p.
021001
.
7.
Yu
,
Y. L.
,
Pu
,
G.
,
Jiang
,
T. C.
, and
Jiang
,
K. L.
,
2021
, “
Optimization of Herringbone Grooved Thrust Air Bearings for Maximum Load Capacity
,”
ASME J. Tribol.
,
143
(
12
), p.
121805
.
8.
Zhang
,
X. Q.
,
Chen
,
Q. H.
, and
Liu
,
J. F.
,
2017
, “
Steady Characteristics of High-Speed Micro-Gas Journal Bearings With Different Gaseous Lubricants and Extreme Temperature Difference
,”
ASME J. Tribol.
,
139
(
2
), p.
021703
.
9.
Khonsari
,
M.
,
2021
, “
Air Bearings Theory, Design and Applications
,”
ASME J. Tribol.
,
143
(
11
), p.
116501
.
10.
Alexander
,
F.
,
Garcia
,
A.
, and
Alder
,
B.
,
1994
, “
Direct Simulation Monte Carlo for Thin-Film Bearings
,”
Phys. Fluids
,
6
(
12
), pp.
3854
3860
.
11.
Duwensee
,
M.
,
Talke
,
F. E.
,
Suzuki
,
S.
,
Lin
,
J.
, and
Wachenschwanz
,
D.
,
2009
, “
Direct Simulation Monte Carlo Method for the Simulation of Rarefied Gas Flow in Discrete Track Recording Head/Disk Interfaces
,”
ASME J. Tribol.
,
131
(
1
), p.
012001
.
12.
Fukui
,
S.
,
Kitagawa
,
N.
,
Wakabayashi
,
R.
,
Yamane
,
K.
, and
Matsuoka
,
H.
,
2014
, “
Thermo-Molecular Gas-Film Lubrication (t-MGL) Analysis for Heat-Assisted Magnetic Recording Head Sliders
,”
Microsyst. Technol.
,
20
(
8–9
), pp.
1447
1454
.
13.
Fukui
,
S.
,
Shinohara
,
F.
,
Asada
,
R.
, and
Matsuoka
,
H.
,
2020
, “
Thermo-molecular Gas-Film Lubrication (t-MGL) Considering Temperature Distributions and Accommodation Coefficients: Analyses by Quasi-Free-Molecular t-MGL Equation
,”
Microsyst. Technol.
,
26
(
1
), pp.
275
289
.
14.
Knudsen
,
M.
,
1909
, “
Eine revision der gleichgewichtsbedingung dergase. Thermische molekularströmung
,”
Ann. Phys.
,
336
(
1
), pp.
205
229
.
15.
Akhlaghi
,
H.
,
Roohi
,
E.
, and
Stefanov
,
S.
,
2023
, “
A Comprehensive Review on Micro- and Nano-scale Gas Flow Effects: Slip-Jump Phenomena, Knudsen Paradox, Thermally-Driven Flows, and Knudsen Pumps
,”
Phys. Rep.
,
997
, pp.
1
60
.
16.
Du
,
S. R.
,
Hamdi
,
M.
, and
Sue
,
H. J.
,
2020
, “
Experimental and FEM Analysis of mar Behavior on Amorphous Polymers
,”
Wear
,
444
, p.
203155
.
17.
Du
,
S.
,
Hamdi
,
M.
, and
Sue
,
H. J.
,
2020
, “
Finite Element Modeling on Barrel Mar Behavior of Amorphous Polymers
,”
The Annual Technical Conference for Plastic Professionals
,
Virtual Online
,
Mar. 30–May 5
, pp.
363
367
.
18.
Du
,
S. R.
,
Mullins
,
M.
,
Hamdi
,
M.
, and
Sue
,
H. J.
,
2020
, “
Quantitative Modeling of Scratch Behavior of Amorphous Polymers at Elevated Temperatures
,”
Polymer
,
197
, p.
122504
.
19.
Burgdorfer
,
A.
,
1959
, “
The Influence of the Molecular Mean Free Path on the Performance of Hydrodynamic Gas Lubricated Bearings
,”
ASME J. Basic Eng.
,
81
(
1
), pp.
94
100
.
20.
Chen
,
D.
, and
Bogy
,
D. B.
,
2010
, “
Comparisons of Slip-Corrected Reynolds Lubrication Equations for the Air Bearing Film in the Head-Disk Interface of Hard Disk Drives
,”
Tribol. Lett.
,
37
(
2
), pp.
191
201
.
21.
Fukui
,
S.
, and
Kaneko
,
R.
,
1990
, “
A Database for Interpolation of Poiseuille Flow Rates for High Knudsen Number Lubrication Problems
,”
ASME J. Tribol.
,
112
(
1
), pp.
78
83
.
22.
Molero
,
G.
,
Du
,
S. R.
,
Mamak
,
M.
,
Agerton
,
M.
,
Hossain
,
M. M.
, and
Sue
,
H. J.
,
2019
, “
Experimental and Numerical Determination of Adhesive Strength in Semi-rigid Multi-layer Polymeric Systems
,”
Polym. Test
,
75
, pp.
85
92
.
23.
Du
,
S. R.
,
Zhu
,
Z. W.
,
Liu
,
C.
,
Zhang
,
T.
,
Hossain
,
M. M.
, and
Sue
,
H. J.
,
2021
, “
Experimental Observation and Finite Element Method Modeling on Scratch-Induced Delamination of Multilayer Polymeric Structures
,”
Polym. Eng. Sci.
,
61
(
6
), pp.
1742
1754
.
24.
Gu
,
X.
,
Emerson
,
D. R.
, and
Tang
,
G.
,
2009
, “
Kramers’ Problem and the Knudsen Minimum: A Theoretical Analysis Using a Linearized 26 Moment Approach
,”
Contin. Mech. Thermodyn.
,
21
(
5
), pp.
345
360
.
25.
Guo
,
Z.
,
Qin
,
J.
, and
Zheng
,
C.
,
2014
, “
Generalized Second-Order Slip Boundary Condition for Nonequilibrium Gas Flows
,”
Phys. Rev. E
,
89
(
1
), p.
013021
.
26.
Cercignani
,
C.
, and
Lorenzani
,
S.
,
2010
, “
Variational Derivation of Second-Order Slip Coefficients on the Basis of the Boltzmann Equation for Hard-Sphere Molecules
,”
Phys. Fluids
,
22
(
6
), p.
062004
.
27.
Gu
,
X.
, and
Emerson
,
D. R.
,
2009
, “
A Higher-Order Moment Approach for Capturing Non-Equilibrium Phenomena in the Transition Regime
,”
J. Fluid Mech.
,
636
, pp.
177
216
.
28.
Bao
,
M.
, and
Yang
,
H.
,
2007
, “
Squeeze Film Air Damping in MEMS
,”
Sens. Actuators A
,
136
(
1
), pp.
3
27
.
You do not currently have access to this content.