Abstract

Nonrenewable energy has produced abundant waste during tribological applications because a large portion of energy has been consumed to overcome friction and wear. Solid lubricants have recently aroused significant interest due to their defined friction and wear properties. Despite enormous efforts on solid lubricants, their important contributions to coatings, bulk materials, oil/grease, and super-lubricity have not yet been fully evaluated. This paper discusses in detail the present status of solid lubricants as effective reinforcements in tribology. It begins with the introduction of various descriptions and advanced structures of solid lubricants. Afterwards, it discussed their applications on improving friction properties in coatings and bulk materials. Additionally, lubrication mechanisms of solid lubricants in oil/grease are highlighted, followed by the detailed discussion of super-lubricity for solid lubricants. Finally, this review concludes final outlooks on the main challenges and future directions in this key area.

References

1.
Hasan
,
M. S.
,
Wong
,
T.
,
Rohatgi
,
P. K.
, and
Nosonovsky
,
M.
,
2022
, “
Analysis of the Friction and Wear of Graphene Reinforced Aluminum Metal Matrix Composites Using Machine Learning Models
,”
Tribol. Int.
,
170
, p.
107527
.
2.
Ouyang
,
T.
,
Tang
,
W.
,
Pan
,
M.
,
Tang
,
J.
, and
Huang
,
H.
,
2022
, “
Friction-Reducing and Anti-Wear Properties of 3D Hierarchical Porous Graphene/Multi-Walled Carbon Nanotube in Castor Oil Under Severe Condition: Experimental Investigation and Mechanism Study
,”
Wear
,
498–499
, p.
204302
.
3.
Zhou
,
R.
,
Ju
,
H.
,
Liu
,
S.
,
Zhao
,
Z.
,
Xu
,
J.
,
Yu
,
L.
,
Qian
,
H.
,
Jia
,
S.
,
Song
,
R.
, and
Shen
,
J.
,
2022
, “
The Influences of Ag Content on the Friction and Wear Properties of TiCN–Ag Films
,”
Vacuum
,
196
, p.
110719
.
4.
Zhai
,
W.
,
Srikanth
,
N.
,
Kong
,
L. B.
, and
Zhou
,
K.
,
2017
, “
Carbon Nanomaterials in Tribology
,”
Carbon
,
119
, pp.
150
171
.
5.
Huang
,
Q.
,
Shi
,
X.
,
Xue
,
Y.
,
Zhang
,
K.
, and
Wu
,
C.
,
2022
, “
Wear-Triggered Self-Repairing Behavior of Bionic Textured AISI 4140 Steel Filled With Multi-Solid Lubricants
,”
Wear
,
504–505
, p.
204416
.
6.
Velmurugan
,
V.
, and
Manimaran
,
G.
,
2022
, “
Effect of MoS2 Solid Lubricant on the Tribological Aspects of Ti–6Al–4V Alloy in Drilling Operations
,”
Mater. Today: Proc.
,
62
, pp.
925
932
.
7.
Lee
,
J.
,
Wooh
,
S.
, and
Choi
,
C.-H.
,
2020
, “
Fluorocarbon Lubricant Impregnated Nanoporous Oxide for Omnicorrosion-Resistant Stainless Steel
,”
J. Colloid Interface Sci.
,
558
, pp.
301
309
.
8.
Hudec
,
T.
,
Izai
,
V.
,
Satrapinskyy
,
L.
,
Huminiuc
,
T.
,
Roch
,
T.
,
Gregor
,
M.
,
Grančič
,
B.
,
Mikula
,
M.
, and
Polcar
,
T.
,
2021
, “
Structure, Mechanical and Tribological Properties of MoSe2 and Mo–Se–N Solid Lubricant Coatings
,”
Surf. Coat. Technol.
,
405
, p.
126536
.
9.
Fasihi
,
P.
,
Kendall
,
O.
,
Abrahams
,
R.
,
Mutton
,
P.
,
Lai
,
Q.
,
Qiu
,
C.
, and
Yan
,
W.
,
2021
, “
Effect of Graphite and MoS2 Based Solid Lubricants for Application at Wheel–Rail Interface on the Wear Mechanism and Surface Morphology of Hypereutectoid Rails
,”
Tribol. Int.
,
157
(
17
), p.
106886
.
10.
Das
,
R.
, and
Bandyopadhyay
,
P. P.
,
2022
, “
Processing of Solid Lubricant Doped Ceramic Powder Feedstock Using Heterocoagulation Technique for Plasma Spraying
,”
Ceram. Int.
,
48
(
17
), pp.
25592
25609
.
11.
Bagde
,
P.
,
Mehar
,
S.
,
Sapate
,
S. G.
, and
Rathod
,
A.
,
2022
, “
Effect of Graphite Addition on Tribological Behaviour of Plasma Sprayed Cr2O3–TiO2 Coating
,”
Mater. Today: Proc.
,
56
, pp.
2365
2370
.
12.
Yanhan
,
F.
,
Jianhua
,
F.
,
Ping
,
L.
,
Kecheng
,
G.
,
Shuang
,
S.
,
Jiang
,
W.
, and
Zeqi
,
J.
,
2022
, “
Preparation and Tribological Behaviors of Plasma Sprayed NiAl-Cu/Graphite Nanosheets Composite Coating
,”
Tribol. Int.
,
167
, p.
107360
.
13.
Guan
,
Z.
,
Zhang
,
P.
,
Florian
,
V.
,
Wu
,
Z.
,
Zeng
,
D.
,
Liu
,
J.
,
Wang
,
B.
,
Tu
,
X.
,
Li
,
S.
, and
Li
,
W.
,
2022
, “
Preparation and Tribological Behaviors of Magnesium Silicate Hydroxide-MoS2 Nanoparticles as Lubricant Additive
,”
Wear
,
492–493
, p.
204237
.
14.
Zhang
,
Q.
,
Song
,
H.
,
Wu
,
B.
,
Feng
,
W.
,
Li
,
X.
,
Jiao
,
Y.
, and
Hu
,
X.
,
2021
, “
Effect of Magnetic Field on the Tribological Behaviors of Fe3O4@MoS2 as Polyalphaolefin Additive in the Steel/Steel Friction Interface
,”
Wear
,
466–467
, p.
203586
.
15.
Jamshidi
,
R.
,
Bayat
,
O.
, and
Heidarpour
,
A.
,
2018
, “
Tribological and Corrosion Behavior of Flame Sprayed Al–10 wt% Ti3SiC2 Composite Coating on Carbon Steel
,”
Surf. Coat. Technol.
,
358
, pp.
1
10
.
16.
Xue
,
Y.
,
Wu
,
C.
,
Shi
,
X.
,
Zhang
,
K.
, and
Huang
,
Q.
,
2021
, “
High Temperature Tribological Behavior of Textured CSS-42L Bearing Steel Filled With Sn-Ag-Cu-Ti3C2
,”
Tribol. Int.
,
164
, p.
107205
.
17.
Kang
,
X.
,
Xie
,
X.
, and
Zhang
,
L.
,
2020
, “
Tribological Behavior and Self-Lubricating Mechanism of Ag–C Fiber Brushes Under Air and Vacuum Conditions
,”
Wear
,
460–461
, p.
203458
.
18.
Wang
,
Y.
,
Zhang
,
Z.
,
Yang
,
M.
,
Yuan
,
J.
,
Li
,
P.
,
Liu
,
M.
, and
He
,
Y.
,
2022
, “
Ag Nanoparticles Homogeneously Anchored on Kaolin Synergistically Improve the Tribological Performance of PBO/Phenolic Resin Liner Composites
,”
Tribol. Int.
,
168
, p.
107424
.
19.
Da
,
B.
,
Yongxin
,
G.
,
Vasu
,
A. T.
,
Yaxuan
,
L.
,
Yongwu
,
Z.
, and
Yongguang
,
W.
,
2020
, “
Influence of GO-Al2O3 Hybrid Material on the Tribological Behavior of Chemically Bonded Ceramic Coating
,”
Ceram. Int.
,
46
(
14
), pp.
23027
23034
.
20.
Bharadwaja
,
K.
,
Srinivasa Rao
,
S.
, and
Baburao
,
T.
,
2022
, “
Epoxy Reinforced With Nano TiO2 Particles: An Experimental Investigation of Mechanical & Tribological Behavior
,”
Mater. Today: Proc.
,
62
, pp.
1817
1820
.
21.
Shreyas
,
P. S.
,
Mahesh
,
B. P.
,
Rajanna
,
S.
, and
Rajesh
,
N.
,
2021
, “
Evaluating the Tribological Properties of Aluminium Based Hybrid Composites Reinforced With Al2O3 & ZrO2 Nano Particles
,”
Mater. Today: Proc.
,
45
, pp.
429
433
.
22.
Rostami
,
S.
,
Mahdavi
,
S.
,
Alinezhadfar
,
M.
, and
Mohseni
,
A.
,
2021
, “
Tribological and Corrosion Behavior of Electrochemically Deposited Co/TiO2 Micro/Nano-Composite Coatings
,”
Surf. Coat. Technol.
,
423
, p.
127591
.
23.
Fan
,
X.
,
Gan
,
C.
,
Feng
,
P.
,
Ma
,
X.
,
Yue
,
Z.
,
Li
,
H.
,
Li
,
W.
, and
Zhu
,
M.
,
2022
, “
Controllable Preparation of Fluorinated Boron Nitride Nanosheets for Excellent Tribological Behaviors
,”
Chem. Eng. J.
,
431
, p.
133482
.
24.
Liu
,
S.
,
Lu
,
H.
,
Liu
,
C.
,
Liu
,
X.
,
Wang
,
H.
, and
Song
,
X.
,
2021
, “
Tribological Behavior of WC-Co-CaF2 Self-Lubricating Cemented Carbides
,”
Int. J. Refract. Met. Hard Mater.
,
96
, p.
105492
.
25.
Sarkar
,
M.
,
Sadhu
,
K. K.
,
Chakraborty
,
S. S.
, and
Mandal
,
N.
,
2022
, “
Simultaneous Effect of CaF2 and TiC on Tribological Properties of ZTA Ceramics for High Temperature Application
,”
Mater. Today: Proc.
,
57
, pp.
116
120
.
26.
Zhang
,
F.
,
Yang
,
K.
,
Liu
,
G.
,
Chen
,
Y.
,
Wang
,
M.
,
Li
,
S.
, and
Li
,
R.
,
2022
, “
Recent Advances on Graphene: Synthesis, Properties and Applications
,”
Compos. Part A: Appl. Sci. Manuf.
,
160
, p.
107051
.
27.
Yang
,
X.
, and
Wang
,
W.
,
2023
, “
Friction Characteristics in Graphene/MoS2 Heterojunction
,”
Surf. Sci.
,
728
, p.
122207
.
28.
Guan
,
C.
,
Zhou
,
H.
,
Liao
,
Y.
, and
Xiang
,
Q.
,
2023
, “
2D/2D g-C3N4/ZnxCd1-xS Van der Waals Heterojunctions Modulation: Interfacial Chemical Bond Accelerating Charge Separation for Enhanced Photocatalytic CO2 Reduction
,”
Appl. Surf. Sci.
,
619
, p.
156734
.
29.
Zhao
,
J.
,
Peng
,
Y.
,
Zhou
,
Q.
, and
Zou
,
K.
,
2021
, “
The Current-Carrying Tribological Properties of Cu/Graphene Composites
,”
ASME J. Tribol.
,
143
(
10
), p.
102101
.
30.
Mansouri
,
A.
,
Ghasemi
,
H. M.
,
Yazdi
,
R.
,
Mahmudi
,
R.
, and
Sohi
,
M. H.
,
2022
, “
Dry Tribological Behavior of a Cast Mg–Gd–Zr–Ag Alloy at Room and Elevated Temperatures
,”
J. Mater. Res. Technol.
,
18
, pp.
5126
5143
.
31.
Song
,
X.
,
Liu
,
Y.
,
Wang
,
X.
, and
Zhang
,
E.
,
2021
, “
Effect of Cu on the Tribocorrosion Behavior of Antibacterial CoCrMo Alloys in Simulated Biological Environment
,”
ASME J. Tribol.
,
143
(
7
), p.
074501
.
32.
Kang
,
X.
,
Wang
,
J.
,
Yang
,
F.
,
Zhang
,
X.
,
Tu
,
Y.
,
Zhang
,
L.
, and
Yang
,
H.
,
2023
, “
A Novel CoCrNi/W/Agx Medium-Entropy Alloy Matrix Composite Reinforced by Ag Nanoparticle and Self-Lubricating Mechanism Under Ambient Air and High Vacuum Conditions
,”
Wear
,
516–517
, p.
204586
.
33.
Ürdem
,
Ş.
,
Duru
,
E.
,
Algül
,
H.
,
Uysal
,
M.
, and
Akbulut
,
H.
,
2021
, “
Evaluation of High Temperature Tribological Behavior of Electroless Deposited NiB–Al2O3 Coating
,”
Wear
,
482–483
, p.
203960
.
34.
Elagouz
,
A.
,
Ali
,
M. K. A.
,
Xianjun
,
H.
,
Abdelkareem
,
M. A. A.
, and
Hassan
,
M. A.
,
2020
, “
Frictional Performance Evaluation of Sliding Surfaces Lubricated by Zinc-Oxide Nano-Additives
,”
Surf. Eng.
,
36
(
2
), pp.
144
157
.
35.
Sukumaran
,
S.
,
Francis Xavier
,
L.
, and
Deepanraj
,
B.
,
2023
, “
A Review on the Scope of Using Calcium Fluoride as a Multiphase Coating and Reinforcement Material for Wear Resistant Applications
,”
Mater. Today: Proc.
,
77
, pp.
478
489
.
36.
Mazumder
,
S.
,
Metselaar
,
H. S. C.
,
Sukiman
,
N. L.
, and
Mohd Zulkifli
,
N. W.
,
2023
, “
Friction and Wear Behavior of Fluoride Added Si3N4-SiC Ceramic Composites at Elevated Temperature
,”
Ceram. Int.
,
49
(
8
), pp.
12787
12795
.
37.
Du
,
S.
,
Mullins
,
M.
,
Hamdi
,
M.
, and
Sue
,
H.-J.
,
2020
, “
Quantitative Modeling of Scratch Behavior of Amorphous Polymers at Elevated Temperatures
,”
Polymer
,
197
, p.
122504
.
38.
Li
,
X.
,
Deng
,
J.
,
Liu
,
L.
,
Duan
,
R.
, and
Ge
,
D.
,
2021
, “
Fabrication of WS2/C Composite Coatings Via Electrohydrodynamic Atomization and Their Tribology Behaviours
,”
Appl. Surf. Sci.
,
538
, p.
148128
.
39.
Fathi
,
M.
,
Safavi
,
M. S.
,
Mahdavi
,
S.
,
Mirzazadeh
,
S.
,
Charkhesht
,
V.
,
Mardanifar
,
A.
, and
Mehdipour
,
M.
,
2021
, “
Co–P Alloy Matrix Composite Deposits Reinforced by Nano-MoS2 Solid Lubricant: An Alternative Tribological Coating to Hard Chromium Coatings
,”
Tribol. Int.
,
159
, p.
106956
.
40.
Yuan
,
J.
,
Yao
,
Y.
,
Zhuang
,
M.
,
Du
,
Y.
,
Wang
,
L.
, and
Yu
,
Z.
,
2021
, “
Effects of Cu and WS2 Addition on Microstructural Evolution and Tribological Properties of Self-Lubricating Anti-Wear Coatings Prepared by Laser Cladding
,”
Tribol. Int.
,
157
, p.
106872
.
41.
Sahoo
,
S.
,
2021
, “
Self-Lubricating Composites With 2D Materials as Reinforcement: A New Perspective
,”
Reinf. Plast.
,
65
(
2
), pp.
101
103
.
42.
Meng
,
F.
,
Han
,
H.
,
Ma
,
Z.
, and
Tang
,
B.
,
2021
, “
Effects of Aviation Lubrication on Tribological Performances of Graphene/MoS2 Composite Coating
,”
ASME J. Tribol.
,
143
(
3
), p.
031401
.
43.
Borgaonkar
,
A.
, and
Syed
,
I.
,
2022
, “
Tribological Investigation of Composite MoS2–TiO2–ZrO2 Coating Material by Response Surface Methodology Approach
,”
ASME J. Tribol.
,
144
(
3
), p.
031401
.
44.
Li
,
L.
,
Lu
,
Z.
,
Pu
,
J.
, and
Hou
,
B.
,
2021
, “
Investigating the Tribological and Corrosive Properties of MoS2/Zr Coatings With the Continuous Evolution of Structure for High-Humidity Application
,”
Appl. Surf. Sci.
,
541
, p.
148453
.
45.
Marcinauskas
,
L.
,
Mathew
,
J. S.
,
Milieška
,
M.
,
Aikas
,
M.
, and
Kalin
,
M.
,
2020
, “
Effect of Graphite Concentration on the Tribological Performance of Alumina Coatings
,”
J. Alloys Compd.
,
827
, p.
154135
.
46.
Lifan
,
S.
,
Yuan
,
G.
, and
Dejun
,
K.
,
2021
, “
Effect of MoS2 Mass Fraction on Microstructure and Tribological Characteristics of Laser Cladded Cu–10Al Coating
,”
Surf. Interfaces
,
28
, p.
101599
.
47.
Hudec
,
T.
,
Mikula
,
M.
,
Satrapinskyy
,
L.
,
Roch
,
T.
,
Truchlý
,
M.
,
Švec
,
P.
,
Huminiuc
,
T.
, and
Polcar
,
T.
,
2019
, “
Structure, Mechanical and Tribological Properties of Mo–S–N Solid Lubricant Coatings
,”
Appl. Surf. Sci.
,
486
, pp.
1
14
.
48.
Su
,
Y.
,
Jiang
,
F.
,
Long
,
M.
,
Wu
,
F.
,
Xiao
,
Z.
, and
Wu
,
M.
,
2023
, “
Microstructure and Frictional Properties of Copper-Tin Composites Containing Graphite and MoS2 by Rapid Hot-Press Sintering
,”
Tribol. Int.
,
183
, p.
108392
.
49.
Sathiskumar
,
M.
, and
Kamaraj
,
M.
,
2022
, “
Surface Characteristics of AZ91D/MoS2 Surface Composite by Friction Stir Processing
,”
Mater. Today: Proc.
,
65
, pp.
401
407
.
50.
Yao
,
Y.
,
Wu
,
Y.
,
Zhang
,
Z.
,
Zhu
,
H.
,
Hu
,
M.
,
Xu
,
K.
, and
Liu
,
Y.
,
2022
, “
Enhancement of Frictional Properties of Ni–MoS2 Self-Lubricating Composite Coatings by Microgroove Arrays
,”
Appl. Surf. Sci.
,
605
, p.
154635
.
51.
Hudec
,
T.
,
Bondarev
,
A.
,
Izai
,
V.
,
Šroba
,
V.
,
Satrapinskyy
,
L.
,
Roch
,
T.
,
Turiničová
,
V.
,
Grančič
,
B.
,
Polcar
,
T.
, and
Mikula
,
M.
,
2021
, “
Titanium Doped MoSe2 Coatings—Synthesis, Structure, Mechanical and Tribological Properties Investigation
,”
Appl. Surf. Sci.
,
568
, p.
150990
.
52.
Wu
,
Z.
,
Jia
,
W.
,
Li
,
Z.
,
Hou
,
K.
,
Ma
,
L.
,
Wang
,
J.
, and
Yang
,
S.
,
2020
, “
The Effect of α-Zirconium Phosphate Nanosheets on Thermal, Mechanical, and Tribological Properties of Polyimide
,”
Macromol. Mater. Eng.
,
305
(
6
), p.
2000043
.
53.
Huang
,
Z.
, and
Zhao
,
W.
,
2020
, “
Coupling Hybrid of HBN Nanosheets and TiO2 to Enhance the Mechanical and Tribological Properties of Composite Coatings
,”
Prog. Org. Coat.
,
148
, p.
105881
.
54.
Zhao
,
Y.
,
Feng
,
K.
,
Yao
,
C.
,
Nie
,
P.
,
Huang
,
J.
, and
Li
,
Z.
,
2019
, “
Microstructure and Tribological Properties of Laser Cladded Self-Lubricating Nickel-Base Composite Coatings Containing Nano-Cu and h-BN Solid Lubricants
,”
Surf. Coat. Technol.
,
359
, pp.
485
494
.
55.
Chen
,
B.
,
Zhang
,
M.
,
Li
,
X.
,
Dong
,
Z.
,
Jia
,
Y.
, and
Li
,
C.
,
2020
, “
Tribological Properties of Epoxy-Based Self-Lubricating Composite Coating Enhanced by 2D/2D h-BN/MoS2 Hybrid
,”
Prog. Org. Coat.
,
147
, p.
105767
.
56.
Chen
,
B.
,
Dong
,
Z.
,
Li
,
J.
,
Zhang
,
M.
, and
Zhang
,
K.
,
2021
, “
ZnO Nanowires-Decorated h-BN Hybrid for Enhancing the Tribological Properties of Epoxy Resin
,”
Prog. Org. Coat.
,
161
, p.
106493
.
57.
Li
,
B.
,
Xv
,
W.
,
Liu
,
P.
,
Huang
,
D.
,
Zhou
,
X.
,
Zhao
,
R.
,
Li
,
S.
,
Liu
,
Q.
, and
Jiang
,
X.
,
2021
, “
Novel Green Lubricated Materials: Aqueous PAI-MoS2-Graphite Bonded Solid Lubricating Coating
,”
Prog. Org. Coat.
,
155
, p.
106225
.
58.
Hao
,
Y.
,
Zhou
,
X.
,
Shao
,
J.
, and
Zhu
,
Y.
,
2019
, “
The Influence of Multiple Fillers on Friction and Wear Behavior of Epoxy Composite Coatings
,”
Surf. Coat. Technol.
,
362
, pp.
213
219
.
59.
Maharana
,
H. S.
,
Basu
,
A.
, and
Mondal
,
K.
,
2018
, “
Structural and Tribological Correlation of Electrodeposited Solid Lubricating Ni–WSe2 Composite Coating
,”
Surf. Coat. Technol.
,
349
, pp.
328
339
.
60.
Zhao
,
Y.
,
Wang
,
Y.
,
Yu
,
Z.
,
Planche
,
M.-P.
,
Peyraut
,
F.
,
Liao
,
H.
,
Lasalle
,
A.
,
Allimant
,
A.
, and
Montavon
,
G.
,
2018
, “
Microstructural, Mechanical and Tribological Properties of Suspension Plasma Sprayed YSZ/h-BN Composite Coating
,”
J. Eur. Ceram. Soc
,
38
(
13
), pp.
4512
4522
.
61.
Molero
,
G.
,
Du
,
S.
,
Mamak
,
M.
,
Agerton
,
M.
,
Hossain
,
M. M.
, and
Sue
,
H.-J.
,
2019
, “
Experimental and Numerical Determination of Adhesive Strength in Semi-Rigid Multi-Layer Polymeric Systems
,”
Polym. Test.
,
75
, pp.
85
92
.
62.
Du
,
S.
,
Zhu
,
Z.
,
Liu
,
C.
,
Zhang
,
T.
,
Motaher
,
H. M.
, and
Sue
,
H.-J.
,
2021
, “
Experimental Observation and Finite Element Method Modeling on Scratch-Induced Delamination of Multilayer Polymeric Structures
,”
Polym. Eng. Sci.
,
61
(
6
), pp.
1742
1754
.
63.
Guo
,
C.
,
Yao
,
R.
,
Kong
,
H.
,
Chen
,
J.
, and
Zhou
,
J.
,
2014
, “
Space Tribological Properties of Metal Matrix Space Lubricant Coating Prepared on Titanium Surface
,”
Surf. Coat. Technol.
,
246
, pp.
40
45
.
64.
Murphy
,
A.
,
Norman
,
A.
,
Meagher
,
P.
, and
Browne
,
D.
,
2022
, “
Wear of Bulk Metallic Glass Alloys for Space Mechanism Applications
,”
ASME J. Tribol.
,
144
(
9
), p.
091706
.
65.
Xue
,
Y.
,
Hu
,
X.
,
Shi
,
X.
, and
Huang
,
Q.
,
2022
, “
Lubrication Properties of Textured CSS-42L Bearing Steel Filled With Sn–Ag–Cu–Ti3C2 Under Harsh Environmental Conditions
,”
ASME J. Tribol.
,
144
(
11
), p.
111801
.
66.
Ma
,
Y.
,
Wan
,
H.
,
Ye
,
Y.
,
Chen
,
L.
,
Li
,
H.
,
Zhou
,
H.
, and
Chen
,
J.
,
2020
, “
In-Situ Synthesis of Size-Tunable Silver Sulfide Nanoparticles to Improve Tribological Properties of the Polytetrafluoroethylene-Based Nanocomposite Lubricating Coatings
,”
Tribol. Int.
,
148
, p.
106324
.
67.
Wang
,
Y.
,
Yang
,
J.
,
Yu
,
J.
,
Chen
,
L.
,
Ding
,
J.
,
Yuan
,
N.
, and
Zhu
,
Y.
,
2014
, “
Ag Nanoparticle–Multiply Alkylated Cyclopentane Composite Ultrathin Films Fabricated by One Step Dip Coating Process and Its Tribological Performances
,”
Surf. Coat. Technol.
,
239
, pp.
65
69
.
68.
Ye
,
F.
,
Lou
,
Z.
,
Wang
,
Y.
, and
Liu
,
W.
,
2022
, “
Wear Mechanism of Ag as Solid Lubricant for Wide Range Temperature Application in Micro-Beam Plasma Cladded Ni60 Coatings
,”
Tribol. Int.
,
167
, p.
107402
.
69.
Li
,
R.
,
Zhao
,
X.
,
Bu
,
Z.
,
An
,
Y.
,
Zhou
,
H.
,
Duan
,
W.
, and
Chen
,
J.
,
2022
, “
Influence of Different Introduction Modes of Metal Ag Into Plasma Sprayed Al2O3 Coating on Tribological Properties
,”
Ceram. Int.
,
48
(
7
), pp.
9286
9296
.
70.
Sivaraj
,
D.
, and
Vijayalakshmi
,
K.
,
2019
, “
Enhanced Antibacterial and Corrosion Resistance Properties of Ag Substituted Hydroxyapatite/Functionalized Multiwall Carbon Nanotube Nanocomposite Coating on 316L Stainless Steel for Biomedical Application
,”
Ultrason. Sonochem.
,
59
, p.
104730
.
71.
Dhandapani
,
V. S.
,
Thangavel
,
E.
,
Arumugam
,
M.
,
Shin
,
K. S.
,
Veeraraghavan
,
V.
,
Yau
,
S. Y.
,
Kim
,
C.
, and
Kim
,
D.-E.
,
2014
, “
Effect of Ag Content on the Microstructure, Tribological and Corrosion Properties of Amorphous Carbon Coatings on 316L SS
,”
Surf. Coat. Technol.
,
240
, pp.
128
136
.
72.
Nasiriardali
,
M.
,
Boroujeny
,
B. S.
,
Doostmohammadi
,
A.
,
Nazari
,
H.
, and
Akbari
,
E.
,
2022
, “
Improvement of Biological and Corrosion Behavior of 316 L Stainless Steel Using PDMS-Ag Doped Willemite Nanocomposite Coating
,”
Prog. Org. Coat.
,
165
, p.
106733
.
73.
Xu
,
X.
,
Sun
,
J.
,
Su
,
F.
,
Li
,
Z.
,
Chen
,
Y.
, and
Xu
,
Z.
,
2022
, “
Microstructure and Tribological Performance of Adaptive MoN–Ag Nanocomposite Coatings With Various Ag Contents
,”
Wear
,
488–489
, p.
204170
.
74.
Li
,
J.
,
Chen
,
B.
,
Dong
,
Z.
,
Yang
,
B.
,
Qiu
,
S.
,
Zhang
,
H.
,
Wang
,
S.
, and
Zhang
,
K.
,
2022
, “
Improved Tribological Performance of Epoxy Self-Lubricating Composite Coating by BNNSs/Ag
,”
Prog. Org. Coat.
,
171
, p.
107020
.
75.
Yang
,
J.
,
Jia
,
J.
,
Li
,
X.
,
Lu
,
C.
, and
Feng
,
X.
,
2021
, “
Synergistic Lubrication of Ag and Ag2MoO4 Nanoparticles Anchored in Plasma-Sprayed YSZ Coatings: Remarkably-Durable Lubricating Performance at 800 °C
,”
Tribol. Int.
,
153
, p.
106670
.
76.
Gholami-Kermanshahi
,
M.
,
Wu
,
Y.-Y.
,
Lange
,
G.
, and
Chang
,
S.-H.
,
2023
, “
Effect of Alloying Elements (Nb, Ag) on the Damping Performance of Cu–Al–Mn Shape Memory Alloys
,”
J. Alloys Compd.
,
930
, p.
167438
.
77.
Lixia
,
Y.
,
Zhenghui
,
L.
,
Ke
,
W.
,
Xiupeng
,
L.
, and
Guixiang
,
W.
,
2017
, “
Effect of TiO2 Sol on the Microstructure and Tribological Properties of Cu–Sn Coating
,”
Rare Met. Mater. Eng.
,
46
(
10
), pp.
2801
2806
.
78.
Shi
,
P.
,
Wan
,
S.
,
Yi
,
G.
,
Sun
,
H.
,
Yu
,
Y.
,
Xie
,
E.
,
Wang
,
Q.
,
Shen
,
S. Z.
, and
Alam
,
N.
,
2020
, “
TiO2–ZnO/Ni–5 wt% Al Composite Coatings on GH4169 Superalloys by Atmospheric Plasma Spray Techniques and Theirs Elevated-Temperature Tribological Behavior
,”
Ceram. Int.
,
46
(
9
), pp.
13527
13538
.
79.
Yousefi
,
E.
,
Sharafi
,
S.
, and
Irannejad
,
A.
,
2021
, “
Microstructure, Tribological Behavior and Magnetic Properties of Fe−Ni−TiO2 Composite Coatings Synthesized Via Pulse Frequency Variation
,”
Trans. Nonferrous Met. Soc. China
,
31
(
12
), pp.
3800
3813
.
80.
Kumar
,
J. K.
,
Rao
,
T. B.
, and
Krishna
,
K. R.
,
2023
, “
The Microstructural Properties and Tribological Performance of Al2O3 and TiN Nanoparticles Reinforced Ti–6Al–4V Composite Coating Deposited on AISI304 Steel by TIG Cladding
,”
ASME J. Tribol.
,
145
(
1
), p.
011401
.
81.
Haldar
,
P.
,
Mukherjee
,
A.
,
Bhattacharya
,
T. K.
, and
Modak
,
N.
,
2022
, “
Innovative Approach to Evaluate the Wearing of Nano-TiO2-Doped Alumina Ceramics in the Light of Image Modeling
,”
ASME J. Tribol.
,
144
(
5
), p.
054501
.
82.
Ataie
,
S. A.
, and
Zakeri
,
A.
,
2016
, “
Improving Tribological Properties of (Zn–Ni)/Nano Al2O3 Composite Coatings Produced by Ultrasonic Assisted Pulse Plating
,”
J. Alloys Compd.
,
674
, pp.
315
322
.
83.
Yao
,
Q.
,
Jia
,
J.
,
Chen
,
T.
,
Xin
,
H.
,
Shi
,
Y.
,
He
,
N.
,
Feng
,
X.
,
Shi
,
P.
, and
Lu
,
C.
,
2020
, “
High Temperature Tribological Behaviors and Wear Mechanisms of NiAl–MoO3/CuO Composite Coatings
,”
Surf. Coat. Technol.
,
395
, p.
125910
.
84.
Qiu
,
X.
,
Tariq
,
N. u. H.
,
Wang
,
J.-q.
,
Tang
,
J.-r.
,
Gyansah
,
L.
,
Zhao
,
Z.-p.
, and
Xiong
,
T.-y.
,
2018
, “
Microstructure, Microhardness and Tribological Behavior of Al2O3 Reinforced A380 Aluminum Alloy Composite Coatings Prepared by Cold Spray Technique
,”
Surf. Coat. Technol.
,
350
, pp.
391
400
.
85.
Feng
,
Y.
,
Fang
,
J.
,
Wu
,
J.
,
Gu
,
K.
, and
Liu
,
P.
,
2020
, “
Mechanical and Tribological Properties of Plasma Sprayed Graphene Nanosheets/Al2O3+13 wt%TiO2 Composite Coating
,”
Tribol. Int.
,
146
, p.
106233
.
86.
Mehar
,
S.
,
Sapate
,
S. G.
,
Vashishtha
,
N.
,
Rathod
,
A.
, and
Bagde
,
P.
,
2021
, “
Tribological Performance of Plasma Sprayed Al2O3–TiO2–ZrO2 Ceramic Coating
,”
Mater. Today: Proc.
,
45
, pp.
4737
4741
.
87.
Mehar
,
S.
,
Sapate
,
S. G.
,
Vashishtha
,
N.
,
Rathod
,
A.
, and
Bagde
,
P.
,
2021
, “
Investigation on Structural, Mechanical and Tribological Properties of Plasma Sprayed Al2O3–40% TiO2 Coating
,”
Mater. Today: Proc.
,
38
, pp.
2525
2531
.
88.
Mazumder
,
S.
,
Metselaar
,
H. S. C.
,
Sukiman
,
N. L.
, and
Zulkifli
,
N. W. M.
,
2020
, “
An Overview of Fluoride-Based Solid Lubricants in Sliding Contacts
,”
J. Eur. Ceram. Soc.
,
40
(
15
), pp.
4974
4996
.
89.
Su
,
W.
,
Zhang
,
J.
,
Zhang
,
J.
,
Zhou
,
K.
,
Niu
,
S.
,
Liu
,
M.
,
Dai
,
H.
, and
Deng
,
C.
,
2021
, “
Microstructure of HVOF-Sprayed Ag–BaF2⋅CaF2–Cr3C2–NiCr Coating and Its Tribological Behavior in a Wide Temperature Range (25 °C to 800 °C)
,”
Ceram. Int.
,
47
(
1
), pp.
865
876
.
90.
Ma
,
Y.
,
Ye
,
Y.
,
Wan
,
H.
,
Chen
,
L.
,
Zhou
,
H.
, and
Chen
,
J.
,
2018
, “
Tribological Behaviors of the UV Curing Polyurethane Acrylate Resin-Polytetrafluoroethylene Bonded Solid Lubricating Coatings Filled With LaF3
,”
Prog. Org. Coat.
,
121
, pp.
218
225
.
91.
Jia
,
Y.
,
Wan
,
H.
,
Chen
,
L.
,
Zhou
,
H.
, and
Chen
,
J.
,
2016
, “
Effects of Nano-LaF3 on the Friction and Wear Behaviors of PTFE-Based Bonded Solid Lubricating Coatings Under Different Lubrication Conditions
,”
Appl. Surf. Sci.
,
382
, pp.
73
79
.
92.
Zhang
,
C.
,
Yang
,
B.
,
Wang
,
J.
,
Wang
,
H.
,
Liu
,
G.
,
Zhang
,
B.
,
Liu
,
L.
,
Feng
,
K.
, and
Li
,
Z.
,
2019
, “
Microstructure and Friction Behavior of LaF3 Doped Ti-MoS2 Composite Thin Films Deposited by Unbalanced Magnetron Sputtering
,”
Surf. Coat. Technol.
,
359
, pp.
334
341
.
93.
Xie
,
T.
, and
Shi
,
Y.
,
2021
, “
Effects of LaF3/CeF3 on the Friction Transfer of PTFE-Based Composites
,”
Tribol. Int.
,
161
, p.
107069
.
94.
Ouyang
,
J. H.
,
Sasaki
,
S.
, and
Umeda
,
K.
,
2001
, “
Low-Pressure Plasma-Sprayed ZrO2–CaF2 Composite Coating for High Temperature Tribological Applications
,”
Surf. Coat. Technol.
,
137
(
1
), pp.
21
30
.
95.
Cai
,
B.
,
Tan
,
Y.-f.
,
He
,
L.
,
Tan
,
H.
, and
Wang
,
X.-l.
,
2013
, “
Tribological Behavior and Mechanisms of Graphite/CaF2/TiC/Ni-Base Alloy Composite Coatings
,”
Trans. Nonferrous Met. Soc. China
,
23
(
2
), pp.
392
399
.
96.
Zhang
,
X.-f.
,
Zhang
,
X.-l.
,
Wang
,
A.-h.
, and
Huang
,
Z.-w.
,
2009
, “
Microstructure and Properties of HVOF Sprayed Ni-Based Submicron WS2/CaF2 Self-Lubricating Composite Coating
,”
Trans. Nonferrous Met. Soc. China
,
19
(
1
), pp.
85
92
.
97.
Schnurmann
,
R.
,
1964
, “
The Friction and Lubrication of Solids: Part II F. P. Bowden and D. Tabor (The International Series of Monographs on Physics). Clarendon Press: Oxford, 1964. xx+544 pp. 6 in. by [Formula Omitted], 84 s
,”
Polymer
,
5
(
6
), pp.
543
543
.
98.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1973
,
Friction: An Introduction to Tribology
,
Anchor Press
,
London
.
99.
Han
,
B.
, and
Lu
,
X.
,
2009
, “
Effect of Nano-Sized CeF3 on Microstructure, Mechanical, High Temperature Friction and Corrosion Behavior of Ni–W Composite Coatings
,”
Surf. Coat. Technol.
,
203
(
23
), pp.
3656
3660
.
100.
Zhen
,
J.
,
Zhu
,
S.
,
Cheng
,
J.
,
Li
,
M.
,
Lu
,
Y.
,
Qiao
,
Z.
, and
Yang
,
J.
,
2017
, “
Influence of Graphite Content on the Dry Sliding Behavior of Nickel Alloy Matrix Solid Lubricant Composites
,”
Tribol. Int.
,
114
, pp.
322
328
.
101.
Hu
,
J.
,
Li
,
S.
,
Zhang
,
J.
,
Chang
,
Q.
,
Yu
,
W.
, and
Zhou
,
Y.
,
2020
, “
Mechanical Properties and Frictional Resistance of Al Composites Reinforced With Ti3C2Tx MXene
,”
Chin. Chem. Lett.
,
31
(
4
), pp.
996
999
.
102.
Rajkumar
,
K.
, and
Aravindan
,
S.
,
2013
, “
Tribological Behavior of Microwave Processed Copper–Nanographite Composites
,”
Tribol. Int.
,
57
, pp.
282
296
.
103.
Hammes
,
G.
,
Mucelin
,
K. J.
,
da Costa Gonçalves
,
P.
,
Binder
,
C.
,
Binder
,
R.
,
Janssen
,
R.
,
Klein
,
A. N.
, and
de Mello
,
J. D. B.
,
2017
, “
Effect of Hexagonal Boron Nitride and Graphite on Mechanical and Scuffing Resistance of Self Lubricating Iron Based Composite
,”
Wear
,
376–377
, pp.
1084
1090
.
104.
Naffakh
,
M.
,
Marco
,
C.
,
Gómez
,
M. A.
, and
Jiménez
,
I.
,
2011
, “
Novel Melt-Processable Nylon-6/Inorganic Fullerene-Like WS2 Nanocomposites for Critical Applications
,”
Mater. Chem. Phys.
,
129
(
1
), pp.
641
648
.
105.
Tajdeen
,
A.
,
Megalingam
,
A.
,
Sivanesh Prabhu
,
M.
, and
Wasim Khan
,
M.
,
2023
, “
Role of Tungsten Disulfide Particles on the Microstructure, Mechanical, and Tribological Behaviors of Friction Stir-Processed Magnesium-Based Composite
,”
ASME J. Tribol.
,
145
(
1
), p.
014501
.
106.
Wu
,
Z.
,
Zhang
,
S.
,
Chen
,
H.
,
Hai
,
W.
,
Liu
,
M.
,
Sun
,
W.
, and
Qin
,
F.
,
2023
, “
Tribo-Oxidation and Tribological Behavior of TaC–20% SiC Composites at Elevated Temperatures
,”
ASME J. Tribol.
,
145
(
2
), p.
021701
.
107.
He
,
Y.
,
Zhang
,
Z.
,
Wang
,
Y.
,
Liu
,
M.
,
Yuan
,
J.
,
Li
,
P.
, and
Yang
,
M.
,
2022
, “
Combined Effect of Interfacial Modification and α-ZrP Reinforcement on the Tribological Properties of PPS Fabric/Phenolic Composites
,”
Colloids Surf. A
,
648
, p.
129118
.
108.
Lian
,
W.
,
Mai
,
Y.
,
Wang
,
J.
,
Zhang
,
L.
,
Liu
,
C.
, and
Jie
,
X.
,
2019
, “
Fabrication of Graphene Oxide-Ti3AlC2 Synergistically Reinforced Copper Matrix Composites With Enhanced Tribological Performance
,”
Ceram. Int.
,
45
(
15
), pp.
18592
18598
.
109.
Moazami-Goudarzi
,
M.
, and
Nemati
,
A.
,
2018
, “
Tribological Behavior of Self Lubricating Cu/MoS2 Composites Fabricated by Powder Metallurgy
,”
Trans. Nonferrous Met. Soc. China
,
28
(
5
), pp.
946
956
.
110.
Amra
,
M.
,
Ranjbar
,
K.
, and
Hosseini
,
S. A.
,
2018
, “
Microstructure and Wear Performance of Al5083/CeO2/SiC Mono and Hybrid Surface Composites Fabricated by Friction Stir Processing
,”
Trans. Nonferrous Met. Soc. China
,
28
(
5
), pp.
866
878
.
111.
Zhang
,
J.
,
Yang
,
S.
,
Chen
,
Z.
,
Wyszomirska
,
M.
,
Zhao
,
J.
, and
Jiang
,
Z.
,
2019
, “
Microstructure and Tribological Behaviour of Alumina Composites Reinforced With SiC-Graphene Core–Shell Nanoparticles
,”
Tribol. Int.
,
131
, pp.
94
101
.
112.
Zhou
,
L.
,
Xiong
,
J.
,
Guo
,
Z.
,
Ye
,
J.
, and
Liu
,
J.
,
2017
, “
Tribological Performances of Ti(C,N)-Based Cermets With Different Graphite Contents in Dry Sliding Condition
,”
Int. J. Refract. Met. Hard Mater.
,
68
, pp.
113
120
.
113.
Tan
,
H.
,
Guo
,
Y.
,
Wang
,
D.
, and
Cui
,
Y.
,
2022
, “
The Development of a Cu@Graphite Solid Lubricant With Excellent Anti-Friction and Wear Resistant Performances in Dry Condition
,”
Wear
,
488–489
, p.
204181
.
114.
Huang
,
Q.
,
Shi
,
X.
,
Xue
,
Y.
,
Zhang
,
K.
, and
Wu
,
C.
,
2023
, “
Recent Progress on Surface Texturing and Solid Lubricants in Tribology: Designs, Properties, and Mechanisms
,”
Mater. Today Commun.
,
35
, p.
105854
.
115.
Li
,
X.
,
Gao
,
Y.
,
Xing
,
J.
,
Wang
,
Y.
, and
Fang
,
L.
,
2004
, “
Wear Reduction Mechanism of Graphite and MoS2 in Epoxy Composites
,”
Wear
,
257
(
3
), pp.
279
283
.
116.
Yang
,
Y.
,
Liang
,
L.-x.
,
Wu
,
H.
,
Liu
,
B.-w.
,
Qu
,
H.
, and
Fang
,
Q.-h.
,
2020
, “
Effect of Zinc Powder Content on Tribological Behaviors of Brake Friction Materials
,”
Trans. Nonferrous Met. Soc. China
,
30
(
11
), pp.
3078
3092
.
117.
Hao
,
X.
,
Zhen
,
J.
,
Zhao
,
X.
,
Ma
,
J.
,
Chen
,
H.
,
Guo
,
S.
,
Wang
,
C.
, and
Wang
,
C.
,
2022
, “
Effect of Sn Addition on the Tribological Behaviors of CoCrFeNi High Entropy Alloys
,”
J. Alloys Compd.
,
909
, p.
164657
.
118.
Zhen
,
J.
,
Han
,
Y.
,
Chen
,
J.
,
Cheng
,
J.
,
Zhu
,
S.
,
Yang
,
J.
, and
Kong
,
L.
,
2019
, “
Influence of Mo and Al Elements on the Vacuum High Temperature Tribological Behavior of High Strength Nickel Alloy Matrix Composites
,”
Tribol. Int.
,
131
, pp.
702
709
.
119.
Savaşkan
,
T.
,
Hekimoğlu
,
A. P.
,
Azaklı
,
Z.
, and
Çalış
,
M.
,
2022
, “
Effect of Working Conditions on the Lubricated Wear Behavior of Zn–40Al–2Cu–2Si Alloy in the As-Cast and T6 Heat-Treated States
,”
ASME J. Tribol.
,
144
(
3
), p.
031702
.
120.
Li
,
S.
,
Mansori
,
M. E.
,
Wang
,
Q.
,
Kang
,
N.
, and
Hadrouz
,
M. E.
,
2021
, “
Mechanism of Ceramic-Like Friction of Quasicrystal-Reinforced Al Matrix Composites Formed by In Situ Directed Energy Deposition
,”
ASME J. Tribol.
,
143
(
5
), p.
051114
.
121.
Hasan
,
M. S.
,
Kordijazi
,
A.
,
Rohatgi
,
P. K.
, and
Nosonovsky
,
M.
,
2022
, “
Triboinformatics Approach for Friction and Wear Prediction of Al-Graphite Composites Using Machine Learning Methods
,”
ASME J. Tribol.
,
144
(
1
), p.
011701
.
122.
Lu
,
J.
,
Xue
,
Q.
, and
Zhang
,
G.
,
1998
, “
Effect of Silver on the Sliding Friction and Wear Behavior of CeF3 Compact at Elevated Temperatures
,”
Wear
,
214
(
1
), pp.
107
111
.
123.
Wang
,
D.
,
Tan
,
H.
,
Chen
,
W.
,
Zhu
,
S.
,
Cheng
,
J.
, and
Yang
,
J.
,
2021
, “
Tribological Behavior of Ni3Al–Ag Based Self-Lubricating Alloy With Ag2MoO4 Formed by High Temperature Tribo-Chemical Reaction
,”
Tribol. Int.
,
153
, p.
106659
.
124.
Liu
,
X.
,
Shi
,
X.
,
Huang
,
Y.
,
Deng
,
X.
,
Lu
,
G.
,
Yan
,
Z.
, and
Xue
,
B.
,
2018
, “
Tribological Behavior and Self-Healing Functionality of M50 Material Covered With Surface Micropores Filled With Sn–Ag–Cu
,”
Tribol. Int.
,
128
, pp.
365
375
.
125.
Pitchayyapillai
,
G.
,
Seenikannan
,
P.
,
Balasundar
,
P.
, and
Narayanasamy
,
P.
,
2017
, “
Effect of Nano-Silver on Microstructure, Mechanical and Tribological Properties of Cast 6061 Aluminum Alloy—ScienceDirect
,”
Trans. Nonferrous Met. Soc. China
,
27
(
10
), pp.
2137
2145
.
126.
Şevik
,
H.
,
2014
, “
The Effect of Silver on Wear Behaviour of Zinc–Aluminium-Based ZA-12 Alloy Produced by Gravity Casting
,”
Mater. Charact.
,
89
, pp.
81
87
.
127.
Ouyang
,
J. H.
,
Sasaki
,
S.
,
Murakami
,
T.
, and
Umeda
,
K.
,
2005
, “
Tribological Properties of Spark-Plasma-Sintered ZrO2(Y2O3)–CaF2–Ag Composites at Elevated Temperatures
,”
Wear
,
258
(
9
), pp.
1444
1454
.
128.
Chen
,
B.
,
Li
,
J.
,
Zhang
,
M.
,
Dong
,
Z.
, and
Zhang
,
K.
,
2022
, “
Deposition of Ag Nanoparticles on Polydopamine-Functionalized CNTs for Improving the Tribological Properties of PPESK Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
153
, p.
106709
.
129.
Cao
,
S.
,
Zhou
,
J.
,
Wang
,
L.
,
Yu
,
Y.
, and
Xin
,
B.
,
2019
, “
Microstructure, Mechanical and Tribological Property of Multi-Components Synergistic Self-Lubricating NiCoCrAl Matrix Composite
,”
Tribol. Int.
,
131
, pp.
508
519
.
130.
Zhou
,
H.
,
Shi
,
X.
,
Lu
,
G.
,
Chen
,
Y.
,
Yang
,
Z.
,
Wu
,
C.
,
Xue
,
Y.
, and
Ibrahim
,
A. M. M.
,
2020
, “
Friction and Wear Behaviors of TC4 Alloy With Surface Microporous Channels Filled by Sn–Ag–Cu and Al2O3 Nanoparticles
,”
Surf. Coat. Technol.
,
387
, p.
125552
.
131.
Wu
,
L.
,
Zhang
,
Z.
,
Yang
,
M.
,
Yuan
,
J.
,
Li
,
P.
,
Guo
,
F.
, and
Men
,
X.
,
2019
, “
Facile Synthesis of CuO/g-C3N4 Hybrids for Enhancing the Wear Resistance of Polyimide Composite
,”
Eur. Polym. J.
,
116
, pp.
463
470
.
132.
Kumar
,
S.
, and
Kumar
,
R.
,
2023
, “
Tribological Characteristics of Synthesized Hybrid Nanofluid Composed of CuO and TiO2 Nanoparticle Additives
,”
Wear
,
518–519
, p.
204623
.
133.
Sajid Hussain
,
M.
,
Goswami
,
S.
,
Ghosh
,
K.
,
Kumar
,
P.
, and
Mandal
,
N.
,
2022
, “
Evaluation of Mechanical and Tribological Characteristics of Hot-Pressed Self-Lubricating CuO/MgO/ZTA Ceramic Composites
,”
Mater. Today: Proc.
,
50
, pp.
2522
2527
.
134.
Khodabakhshi
,
F.
,
Simchi
,
A.
, and
Kokabi
,
A. H.
,
2017
, “
Surface Modifications of an Aluminum-Magnesium Alloy Through Reactive Stir Friction Processing With Titanium Oxide Nanoparticles for Enhanced Sliding Wear Resistance
,”
Surf. Coat. Technol.
,
309
, pp.
114
123
.
135.
Mirjavadi
,
S. S.
,
Alipour
,
M.
,
Emamian
,
S.
,
Kord
,
S.
,
Hamouda
,
A. M. S.
,
Koppad
,
P. G.
, and
Keshavamurthy
,
R.
,
2017
, “
Influence of TiO2 Nanoparticles Incorporation to Friction Stir Welded 5083 Aluminum Alloy on the Microstructure, Mechanical Properties and Wear Resistance
,”
J. Alloys Compd.
,
712
, pp.
795
803
.
136.
Łatka
,
L.
,
Szala
,
M.
,
Nowakowska
,
M.
,
Walczak
,
M.
,
Kiełczawa
,
T.
, and
Sokołowski
,
P.
,
2023
, “
The Effect of Microstructure and Mechanical Properties on Sliding Wear and Cavitation Erosion of Plasma Coatings Sprayed From Al2O3+40 wt% TiO2 Agglomerated Powders
,”
Surf. Coat. Technol.
,
455
, p.
129180
.
137.
Li
,
S.
,
Dong
,
C.
,
Yuan
,
C.
, and
Bai
,
X.
,
2023
, “
Effects of TiO2 Nano-Particles on Wear-Resistance and Vibration-Reduction Properties of a Polymer for Water-Lubricated Bearing
,”
Wear
,
522
, p.
204713
.
138.
Haldar
,
P.
,
Bhattacharya
,
T. K.
, and
Modak
,
N.
,
2022
, “
Tribological Behavior of Alumina Ceramics With Nano-TiO2 as a Sintering Aid in Non-Conformal Contact
,”
ASME J. Tribol.
,
144
(
6
), p.
061703
.
139.
Namdev
,
A.
,
Telang
,
A.
,
Purohit
,
R.
,
Malviya
,
R.
, and
Rana
,
R. S.
,
2020
, “
Tribological and Mechanical Behavior of Alumina Particles Reinforced LM24 Alloy
,”
Mater. Today: Proc.
,
26
, pp.
3167
3172
.
140.
Vinay
,
S. S.
, and
Venkatesh
,
C. V.
,
2021
, “
Effect of Nano-Al2O3 Particles on Mechanical and Wear Behaviour of Glass Fibre Epoxy Composites
,”
Mater. Today: Proc.
,
46
, pp.
9004
9007
.
141.
Memar
,
S.
,
Azadi
,
M.
, and
abdoos
,
H.
,
2023
, “
An Evaluation on Microstructure, Wear, and Compression Behavior of Al2O3/Brass Matrix Nanocomposites Fabricated by Stir Casting Method
,”
Mater. Today Commun.
,
34
, p.
105130
.
142.
Mazaheri
,
Y.
,
Jalilvand
,
M. M.
,
Heidarpour
,
A.
, and
Jahani
,
A. R.
,
2020
, “
Tribological Behavior of AZ31/ZrO2 Surface Nanocomposites Developed by Friction Stir Processing
,”
Tribol. Int.
,
143
, p.
106062
.
143.
Kumar
,
N.
, and
Irfan
,
G.
,
2021
, “
A Review on Tribological Behaviour and Mechanical Properties of Al/ZrO2 Metal Matrix Nano Composites
,”
Mater. Today: Proc.
,
38
, pp.
2649
2657
.
144.
Madeira
,
S.
,
Buciumeanu
,
M.
,
Nobre
,
D.
,
Carvalho
,
O.
, and
Silva
,
F. S.
,
2022
, “
Development of a Novel Hybrid Ti6Al4V–ZrO2 Surface With High Wear Resistance by Laser and Hot Pressing Techniques for Dental Implants
,”
J. Mech. Behav. Biomed. Mater.
,
136
, p.
105508
.
145.
Ren
,
B.
,
Gao
,
L.
,
Li
,
M.
,
Zhang
,
S.
, and
Ran
,
X.
,
2020
, “
Tribological Properties and Anti-Wear Mechanism of ZnO@Graphene Core–Shell Nanoparticles as Lubricant Additives
,”
Tribol. Int.
,
144
, p.
106114
.
146.
Kumar
,
K.
,
Bansal
,
V.
,
Sharma
,
S.
,
Kimothi
,
S.
, and
Sharma
,
A.
,
2022
, “
Microhardness and Wear Resistance of Alkaline Electroless Ni–P/Ni–P–ZnO Nanocomposite Platings
,”
Mater. Today: Proc.
,
80
, pp.
1219
1224
.
147.
Lu
,
J.
,
Xue
,
Q.
,
Wang
,
J.
, and
Ouyang
,
J.
,
1997
, “
The Effect of CeF3 on the Mechanical and Tribological Properties of Ni-Based Alloy
,”
Tribol. Int.
,
30
(
9
), pp.
659
662
.
148.
Makhesana
,
M. A.
, and
Patel
,
K. M.
,
2021
, “
Improvement in Friction and Wear Characteristics Using CaF2 as a Solid Lubricant at Different Conditions
,”
Met. Powder Rep.
,
76
, pp.
S55
S65
.
149.
Kong
,
L.
,
Bi
,
Q.
,
Niu
,
M.
,
Zhu
,
S.
,
Yang
,
J.
, and
Liu
,
W.
,
2013
, “
High-Temperature Tribological Behavior of ZrO2–MoS2–CaF2 Self-Lubricating Composites
,”
J. Eur. Ceram. Soc.
,
33
(
1
), pp.
51
59
.
150.
Deng
,
J.
, and
Cao
,
T.
,
2007
, “
Self-Lubricating Mechanisms Via the In Situ Formed Tribofilm of Sintered Ceramics With CaF2 Additions When Sliding Against Hardened Steel
,”
Int. J. Refract. Met. Hard Mater.
,
25
(
2
), pp.
189
197
.
151.
Li
,
F.
,
Zhu
,
S.
,
Cheng
,
J.
,
Qiao
,
Z.
, and
Yang
,
J.
,
2017
, “
Tribological Properties of Mo and CaF2 Added SiC Matrix Composites at Elevated Temperatures
,”
Tribol. Int.
,
111
, pp.
46
51
.
152.
Deng
,
J.
,
Cao
,
T.
,
Yang
,
X.
,
Liu
,
J.
,
Sun
,
J.
, and
Zhao
,
J.
,
2007
, “
Wear Behavior and Self Tribofilm Formation of Hot-Pressed Al2O3/TiC/CaF2 Ceramic Composites Sliding Against Cemented Carbide
,”
Ceram. Int.
,
33
(
2
), pp.
213
220
.
153.
Jianxin
,
D.
,
Tongkun
,
C.
,
Zeliang
,
D.
,
Jianhua
,
L.
,
Junlong
,
S.
, and
Jinlong
,
Z.
,
2006
, “
Tribological Behaviors of Hot-Pressed Al2O3/TiC Ceramic Composites With the Additions of CaF2 Solid Lubricants
,”
J. Eur. Ceram. Soc.
,
26
(
8
), pp.
1317
1323
.
154.
Gustavsson
,
F.
, and
Jacobson
,
S.
,
2016
, “
Diverse Mechanisms of Friction Induced Self-Organisation Into a Low-Friction Material—An Overview of WS2 Tribofilm Formation
,”
Tribol. Int.
,
101
, pp.
340
347
.
155.
Guo
,
J.
,
Wu
,
P.
,
Zeng
,
C.
,
Wu
,
W.
,
Zhao
,
X.
,
Liu
,
G.
,
Zhou
,
F.
, and
Liu
,
W.
,
2022
, “
Fluoropolymer Grafted Ti3C2Tx MXene as an Efficient Lubricant Additive for Fluorine-Containing Lubricating Oil
,”
Tribol. Int.
,
170
, p.
107500
.
156.
Jiang
,
H.
,
Hou
,
X.
,
Ma
,
Y.
,
Su
,
D.
,
Qian
,
Y.
,
Ahmed Ali
,
M. K.
, and
Dearn
,
K. D.
,
2022
, “
The Tribological Performance Evaluation of Steel–Steel Contact Surface Lubricated by Polyalphaolefins Containing Surfactant-Modified Hybrid MoS2/h-BN Nano-Additives
,”
Wear
,
504–505
, p.
204426
.
157.
Rai
,
H.
,
Thakur
,
D.
,
Kumar
,
D.
,
Pitkar
,
A.
,
Ye
,
Z.
,
Balakrishnan
,
V.
, and
Gosvami
,
N. N.
,
2022
, “
Spatial Variation in Nanoscale Wear Behavior of Chemical Vapor Deposited Monolayer WS2
,”
Appl. Surf. Sci.
,
605
, p.
154783
.
158.
Chavhan
,
J.
,
Rathod
,
R.
,
Umare
,
S.
,
Desai
,
J.
,
Sapate
,
S.
, and
Mahajan
,
Y.
,
2023
, “
Structural, Physical, Wear and Anticorrosive Properties of Electroactive Polyamide/Ti3C2Tx MXene Nanocomposite
,”
Prog. Org. Coat.
,
178
, p.
107496
.
159.
Li
,
S.
,
Ma
,
Q.
,
Tong
,
Z.
,
Liu
,
Q.
, and
Dong
,
G.
,
2022
, “
Synergistic Lubricating Performance of h-BN/GF Nanoparticles as Oil Additives for Steel–Steel Contact
,”
ASME J. Tribol.
,
144
(
6
), p.
061902
.
160.
Huang
,
H. D.
,
Tu
,
J. P.
,
Gan
,
L. P.
, and
Li
,
C. Z.
,
2006
, “
An Investigation on Tribological Properties of Graphite Nanosheets as Oil Additive
,”
Wear
,
261
(
2
), pp.
140
144
.
161.
Ouyang
,
T.
,
Shen
,
Y.
,
Lei
,
W.
,
Xu
,
X.
,
Liang
,
L.
,
Waqar
,
H. S.
,
Lin
,
B.
,
Tian
,
Z. Q.
, and
Shen
,
P. K.
,
2020
, “
Reduced Friction and Wear Enabled by Arc-Discharge Method-Prepared 3D Graphene as Oil Additive Under Variable Loads and Speeds
,”
Wear
,
462–463
, p.
203495
.
162.
Kader
,
A.
,
Selvaraj
,
V.
,
Ramasamy
,
P.
, and
Senthilkumar
,
K.
,
2023
, “
Experimental Investigation on the Thermo-Physical Properties and Tribological Performance of Acidic Functionalized Graphene Dispersed VG-68 Hydraulic Oil-Based Nanolubricant
,”
Diamond Relat. Mater.
,
133
, p.
109740
.
163.
Wu
,
P.-R.
,
Kong
,
Y.-C.
,
Ma
,
Z.-S.
,
Ge
,
T.
,
Feng
,
Y.-M.
,
Liu
,
Z.
, and
Cheng
,
Z.-L.
,
2018
, “
Preparation and Tribological Properties of Novel Zinc Borate/MoS2 Nanocomposites in Grease
,”
J. Alloys Compd.
,
740
, pp.
823
829
.
164.
Kumari
,
S.
,
Mungse
,
H. P.
,
Gusain
,
R.
,
Kumar
,
N.
,
Sugimura
,
H.
, and
Khatri
,
O. P.
,
2017
, “
Octadecanethiol-Grafted Molybdenum Disulfide Nanosheets as Oil-Dispersible Additive for Reduction of Friction and Wear
,”
FlatChem
,
3
, pp.
16
25
.
165.
Niu
,
M.
,
Qu
,
J.
, and
Gu
,
L.
,
2019
, “
Synthesis of Titanium Complex Grease and Effects of Graphene on Its Tribological Properties
,”
Tribol. Int.
,
140
, p.
105815
.
166.
Curà
,
F.
,
Mura
,
A.
, and
Adamo
,
F.
,
2018
, “
Experimental Investigation About Tribological Performance of Grapheme-Nanoplatelets as Additive for Lubricants
,”
Proc. Struct. Integr.
,
12
, pp.
44
51
.
167.
Mura
,
A.
,
Curà
,
F.
, and
Adamo
,
F.
,
2018
, “
Evaluation of Graphene Grease Compound as Lubricant for Spline Couplings
,”
Tribol. Int.
,
117
, pp.
162
167
.
168.
Wu
,
Y.
,
Zeng
,
X.
,
Ren
,
T.
,
de Vries
,
E.
, and
van der Heide
,
E.
,
2017
, “
The Emulsifying and Tribological Properties of Modified Graphene Oxide in Oil-in-Water Emulsion
,”
Tribol. Int.
,
105
, pp.
304
316
.
169.
Du
,
S.
,
Hamdi
,
M.
, and
Sue
,
H.-J.
,
2020
, “
Experimental and FEM Analysis of Mar Behavior on Amorphous Polymers
,”
Wear
,
444–445
, p.
203155
.
170.
Du
,
S.
,
Hamdi
,
M.
, and
Sue
,
H. J.
,
2020
, “
Finite Element Modeling on Barrel Mar Behavior of Amorphous Polymers
,”
ANTEC 2020: Annual Technical Conference for Plastic Professionals
,
Virtual, Online
,
Mar. 30–May 5
,
Society of Plastics Engineers
, pp.
363
367
.
171.
Makwana
,
D.
, and
Bhingole
,
P. P.
,
2020
, “
Effects of Ca and Al on Microstructural and Tribological Behavior of Mg–Al–Ca Ternary Alloy
,”
Mater. Today: Proc.
,
27
, pp.
1319
1323
.
172.
Chen
,
X.
,
Venezuela
,
J.
, and
Dargusch
,
M.
,
2023
, “
The High Corrosion-Resistance of Ultra-High Purity Mg–Ge Alloy and Its Discharge Performance as Anode for Mg–Air Battery
,”
Electrochim. Acta
,
448
, p.
142127
.
173.
Xie
,
J.
,
Zhang
,
J.
,
Zhang
,
Z.
,
Yu
,
Z.
,
Xu
,
Z.
,
Wang
,
R.
,
Fang
,
D.
,
Zhang
,
X.
,
Zhang
,
X.
, and
Wu
,
R.
,
2023
, “
Corrosion Mechanism of Mg Alloys Involving Elongated Long-Period Stacking Ordered Phase and Intragranular Lamellar Structure
,”
J. Mater. Sci. Technol.
,
151
, pp.
190
203
.
174.
Zhang
,
C.
,
Yao
,
D.
,
Yin
,
J.
,
Zuo
,
K.
,
Xia
,
Y.
,
Liang
,
H.
, and
Zeng
,
Y.-P.
,
2019
, “
Effects of β-Si3N4 Whiskers Addition on Mechanical Properties and Tribological Behaviors of Al Matrix Composites
,”
Wear
,
430–431
, pp.
145
156
.
175.
Heymans
,
G.
,
Muñoz
,
A. I.
, and
Mischler
,
S.
,
2020
, “
Tribological Behaviour of Galvanic Gold Coatings Reinforced With Silica Nanoparticles
,”
Wear
,
462–463
, p.
203512
.
176.
Ren
,
P.
,
Zhang
,
S.
,
Qiu
,
J.
,
Yang
,
X.
,
Wang
,
W.
,
Li
,
Y.
,
Si
,
Y.
,
Wang
,
G.
, and
Wen
,
M.
,
2021
, “
Self-Lubricating Behavior of VN Coating Catalyzed by Solute Ag Atom Under Dry Friction and Oil Lubrication
,”
Surf. Coat. Technol.
,
409
, p.
126845
.
177.
Tang
,
G.
,
Su
,
F.
,
Xu
,
X.
, and
Chu
,
P. K.
,
2020
, “
2D Black Phosphorus Dotted With Silver Nanoparticles: An Excellent Lubricant Additive for Tribological Applications
,”
Chem. Eng. J.
,
392
, p.
123631
.
178.
Ma
,
J.
,
Liu
,
C.
,
Chen
,
W.
,
Chen
,
J.
,
Li
,
Q.
,
Guo
,
J.
, and
Cheng
,
J.
,
2022
, “
Improving the Lubricating Performance of Ga-Based Liquid Metal Doped by Silver
,”
Tribol. Int.
,
171
, p.
107520
.
179.
Ma
,
J.
,
Mo
,
Y.
, and
Bai
,
M.
,
2009
, “
Effect of Ag Nanoparticles Additive on the Tribological Behavior of Multialkylated Cyclopentanes (MACs)
,”
Wear
,
266
(
7
), pp.
627
631
.
180.
Zhang
,
W.
,
Demydov
,
D.
,
Jahan
,
M. P.
,
Mistry
,
K.
,
Erdemir
,
A.
, and
Malshe
,
A. P.
,
2012
, “
Fundamental Understanding of the Tribological and Thermal Behavior of Ag–MoS2 Nanoparticle-Based Multi-Component Lubricating System
,”
Wear
,
288
, pp.
9
16
.
181.
Meng
,
Y.
,
Su
,
F.
, and
Chen
,
Y.
,
2018
, “
Effective Lubricant Additive of Nano-Ag/MWCNTs Nanocomposite Produced by Supercritical CO2 Synthesis
,”
Tribol. Int.
,
118
, pp.
180
188
.
182.
Singh
,
A. K.
,
Atheaya
,
D.
,
Tyagi
,
R.
, and
Ranjan
,
V.
,
2023
, “
High Temperature Friction and Wear of Atmospheric Plasma Spray Deposited NiMoAl–Ag–WS2 Composite Coatings
,”
Surf. Coat. Technol.
,
455
, p.
129225
.
183.
Wang
,
R.
,
Huang
,
H.
,
Qu
,
J.
,
Ren
,
R.
,
He
,
H.
,
Huang
,
F.
, and
Wang
,
Y.
,
2023
, “
Frictional Anisotropy of Oriented Carbon Nanotubes/Rubber Composites and New Insight Into Its Mechanism From the Perspective of Frictional Interface
,”
ASME J. Tribol.
,
145
(
1
), p.
011704
.
184.
Gao
,
X.
,
Zhao
,
Y.
, and
Xiao
,
G.
,
2009
, “
Synthesis and Characterization of Bi–Pb–Sn Alloy Nanocrystals and Their Tribological Performances
,”
J. Alloys Compd.
,
474
(
1
), pp.
73
75
.
185.
Casamassa
,
E.
,
Fioravanti
,
A.
,
Mazzocchi
,
M.
,
Carotta
,
M. C.
, and
Faga
,
M. G.
,
2020
, “
Abrasive Properties of ZnO: Influence of Different Nanoforms
,”
Tribol. Int.
,
142
, p.
105984
.
186.
Kumar
,
R.
,
Kumar
,
V.
, and
Kumar
,
P.
,
2022
, “Effect of Mn Doped ZnO Nanoparticles on Mechanical and Morphological Properties of PLA Thermoplastic Composites,”
Encyclopedia of Materials: Plastics and Polymers
,
M. S. J.
Hashmi
, ed.,
Elsevier
,
Oxford
, pp.
149
155
.
187.
Borgaonkar
,
A.
, and
Syed
,
I.
,
2022
, “
Tribological Investigation of Composite MoS2–TiO2–ZrO2 Coating Material by Response Surface Methodology Approach
,”
ASME J. Tribol.
,
144
(
3
), p.
031401
.
188.
Simsek
,
D.
,
2020
, “
The Wear Performance at High Temperatures of ZrO2-Reinforced Aluminum Matrix Composites Produced by Mechanochemical Reaction Method
,”
ASME J. Tribol.
,
142
(
10
), p.
101701
.
189.
Hai
,
W.
,
Zeng
,
J.
,
Zhang
,
R.
,
Meng
,
J.
, and
Lu
,
J.
,
2014
, “
Oxide-Based Tribofilms and Tribological Behavior of Self-Mated Ti3SiC2 Lubricated by PbO Powders at High Temperatures in Nitrogen Flow
,”
Wear
,
317
(
1
), pp.
233
240
.
190.
Ma
,
S.
,
Zheng
,
S.
,
Cao
,
D.
, and
Guo
,
H.
,
2010
, “
Anti-Wear and Friction Performance of ZrO2 Nanoparticles as Lubricant Additive
,”
Particuology
,
8
(
5
), pp.
468
472
.
191.
Sunil Kumar
,
D.
,
Garg
,
H. C.
, and
Kumar
,
G.
,
2022
, “
Tribological Analysis of Blended Vegetable Oils Containing CuO Nanoparticles as an Additive
,”
Mater. Today: Proc.
,
51
, pp.
1259
1265
.
192.
Kumar
,
V.
,
Dhanola
,
A.
,
Garg
,
H. C.
, and
Kumar
,
G.
,
2020
, “
Improving the Tribological Performance of Canola Oil by Adding CuO Nanoadditives for Steel/Steel Contact
,”
Mater. Today: Proc.
,
28
, pp.
1392
1396
.
193.
Singh
,
D.
,
Ranganathan
,
A.
, and
Diddakuntla
,
G.
,
2021
, “
Tribological Analysis of Putranjiva Oil With Effect of CuO as an Additive
,”
Mater. Today: Proc.
,
46
, pp.
10634
10637
.
194.
Kasar
,
A. K.
,
D’Souza
,
B.
,
Watson
,
K. P.
, and
Menezes
,
P. L.
,
2022
, “
Role of CuO in Al2O3-B2O3 Composites: In Situ Phases, Density, Hardness, and Wear Resistance
,”
ASME J. Tribol.
,
144
(
10
), p.
101704
.
195.
Peña-Parás
,
L.
,
Taha-Tijerina
,
J.
,
Garza
,
L.
,
Maldonado-Cortés
,
D.
,
Michalczewski
,
R.
, and
Lapray
,
C.
,
2015
, “
Effect of CuO and Al2O3 Nanoparticle Additives on the Tribological Behavior of Fully Formulated Oils
,”
Wear
,
332–333
, pp.
1256
1261
.
196.
Asnida
,
M.
,
Hisham
,
S.
,
Awang
,
N. W.
,
Amirruddin
,
A. K.
,
Noor
,
M. M.
,
Kadirgama
,
K.
,
Ramasamy
,
D.
,
Najafi
,
G.
, and
Tarlochan
,
F.
,
2018
, “
Copper (II) Oxide Nanoparticles as Additive in Engine Oil to Increase the Durability of Piston-Liner Contact
,”
Fuel
,
212
, pp.
656
667
.
197.
Suthar
,
K.
,
Singh
,
Y.
,
Surana
,
A. R.
,
Rajubhai
,
V. H.
, and
Sharma
,
A.
,
2020
, “
Experimental Evaluation of the Friction and Wear of Jojoba Oil With Aluminium Oxide (Al2O3) Nanoparticles as an Additive
,”
Mater. Today: Proc.
,
25
, pp.
699
703
.
198.
Xia
,
W.
,
Zhao
,
J.
,
Wu
,
H.
,
Jiao
,
S.
, and
Jiang
,
Z.
,
2017
, “
Effects of Oil-in-Water Based Nanolubricant Containing TiO2 Nanoparticles on the Tribological Behaviour of Oxidised High-Speed Steel
,”
Tribol. Int.
,
110
, pp.
77
85
.
199.
Kotia
,
A.
,
Ghosh
,
G. K.
,
Srivastava
,
I.
,
Deval
,
P.
, and
Ghosh
,
S. K.
,
2019
, “
Mechanism for Improvement of Friction/Wear by Using Al2O3 and SiO2/Gear Oil Nanolubricants
,”
J. Alloys Compd.
,
782
, pp.
592
599
.
200.
Sanukrishna
,
S. S.
,
Vishnu
,
S.
,
Krishnakumar
,
T. S.
, and
Jose Prakash
,
M.
,
2018
, “
Effect of Oxide Nanoparticles on the Thermal, Rheological and Tribological Behaviours of Refrigerant Compressor Oil: An Experimental Investigation
,”
Int. J. Refrig.
,
90
, pp.
32
45
.
201.
Ingole
,
S.
,
Charanpahari
,
A.
,
Kakade
,
A.
,
Umare
,
S. S.
,
Bhatt
,
D. V.
, and
Menghani
,
J.
,
2013
, “
Tribological Behavior of Nano TiO2 as an Additive in Base Oil
,”
Wear
,
301
(
1
), pp.
776
785
.
202.
Zhou
,
J.
,
Wu
,
Z.
,
Zhang
,
Z.
,
Liu
,
W.
, and
Dang
,
H.
,
2001
, “
Study on an Antiwear and Extreme Pressure Additive of Surface Coated LaF3 Nanoparticles in Liquid Paraffin
,”
Wear
,
249
(
5
), pp.
333
337
.
203.
Yuan
,
J.
,
Zhu
,
Y.
,
Ji
,
H.
,
Zheng
,
X.
,
Ruan
,
Q.
,
Niu
,
Y.
,
Liu
,
Z.
, and
Zeng
,
Y.
,
2010
, “
Microstructures and Tribological Properties of Plasma Sprayed WC–Co–Cu–BaF2/CaF2 Self-Lubricating Wear Resistant Coatings
,”
Appl. Surf. Sci.
,
256
(
16
), pp.
4938
4944
.
204.
Jun
,
T.
, and
Qunji
,
X.
,
1997
, “
Tribological Properties of FeCl3-Graphite Intercalation Compound Rubbed Film on Steel
,”
Carbon
,
35
(
3
), pp.
430
432
.
205.
Baş
,
H.
,
Özen
,
O.
, and
Beşirbeyoğlu
,
M. A.
,
2022
, “
Tribological Properties of MoS2 and CaF2 Particles as Grease Additives on the Performance of Block-on-Ring Surface Contact
,”
Tribol. Int.
,
168
, p.
107433
.
206.
Stachowiak
,
A. N.
,
Bershteyn
,
A.
,
Tzatzalos
,
E.
, and
Irvine
,
D. J.
,
2005
, “
Bioactive Hydrogels With an Ordered Cellular Structure Combine Interconnected Macroporosity and Robust Mechanical Properties
,”
Adv. Mater.
,
17
(
4
), pp.
399
403
.
207.
Wang
,
L.
,
Zhang
,
M.
,
Wang
,
X.
, and
Liu
,
W.
,
2008
, “
The Preparation of CeF3 Nanocluster Capped With Oleic Acid by Extraction Method and Application to Lithium Grease
,”
Mater. Res. Bull.
,
43
(
8
), pp.
2220
2227
.
208.
Sunqing
,
Q.
,
Junxiu
,
D.
, and
Guoxu
,
C.
,
1999
, “
Tribological Properties of CeF3 Nanoparticles as Additives in Lubricating Oils
,”
Wear
,
230
(
1
), pp.
35
38
.
209.
Ci
,
X.
,
Zhao
,
W.
,
Luo
,
J.
,
Wu
,
Y.
,
Ge
,
T.
,
Shen
,
L.
,
Gao
,
X.
, and
Fang
,
Z.
,
2019
, “
Revealing the Lubrication Mechanism of Fluorographene Nanosheets Enhanced GTL-8 Based Nanolubricant Oil
,”
Tribol. Int.
,
138
, pp.
174
183
.
210.
Hou
,
K.
,
Gong
,
P.
,
Wang
,
J.
,
Yang
,
Z.
,
Wang
,
Z.
, and
Yang
,
S.
,
2014
, “
Structural and Tribological Characterization of Fluorinated Graphene With Various Fluorine Contents Prepared by Liquid-Phase Exfoliation
,”
RSC Adv.
,
4
(
100
), pp.
56543
56551
.
211.
Yu
,
G.
,
Gong
,
Z.
,
Jiang
,
B.
,
Wang
,
D.
,
Bai
,
C.
, and
Zhang
,
J.
,
2020
, “
Superlubricity for Hydrogenated Diamond Like Carbon Induced by Thin MoS2 and DLC Layer in Moist Air
,”
Diamond Relat. Mater.
,
102
, p.
107668
.
212.
Chen
,
H.
,
Cai
,
T.
,
Li
,
H.
,
Ruan
,
X.
,
Jiao
,
C.
,
Atkin
,
R.
,
Wang
,
Y.
, et al
,
2023
, “
Macroscale Superlubricity of Steel by Polymer-Based Ionic Liquids Without a Running-In Period
,”
Tribol. Int.
,
182
, p.
108349
.
213.
Li
,
Q.
,
Su
,
F.
,
Chen
,
Y.
,
Sun
,
J.
, and
Xiao
,
S.
,
2023
, “
Atomic-Scale Friction of Black Phosphorus/Degraded Cu Substrate: A Route to Robust Superlubricity Obtained by the Critical Load
,”
Appl. Surf. Sci.
,
619
, p.
156749
.
214.
Tian
,
J.
,
Jin
,
J.
,
Zhang
,
C.
,
Xu
,
J.
,
Qi
,
W.
,
Yu
,
Q.
,
Deng
,
W.
, et al
,
2022
, “
Shear-Induced Interfacial Reconfiguration Governing Superlubricity of MoS2–Ag Film Enabled by Diamond-Like Carbon
,”
Appl. Surf. Sci.
,
578
, p.
152068
.
215.
Tang
,
G.
,
Su
,
F.
,
Liu
,
X.
,
Liang
,
Z.
,
Zou
,
T.
, and
Chu
,
P. K.
,
2023
, “
Origin of Superlubricity Promoted by Black Phosphorus Dotted With Gold Nanoparticles
,”
Appl. Surf. Sci.
,
613
, p.
156030
.
216.
Gao
,
X.
,
Chen
,
H.
,
Lv
,
S.
,
Zhang
,
Z.
, and
Wang
,
T.
,
2022
, “
Preliminary Study of the Superlubricity Behavior of Polyimide-Induced Liquid Crystal Alignment
,”
ASME J. Tribol.
,
144
(
4
), p.
041901
.
217.
Gong
,
Z.
,
Jia
,
X.
,
Ma
,
W.
,
Zhang
,
B.
, and
Zhang
,
J.
,
2017
, “
Hierarchical Structure Graphitic-Like/MoS2 Film as Superlubricity Material
,”
Appl. Surf. Sci.
,
413
, pp.
381
386
.
218.
Donnet
,
C.
,
Le Mogne
,
T.
, and
Martin
,
J. M.
,
1993
, “
Superlow Friction of Oxygen-Free MoS2 Coatings in Ultrahigh Vacuum
,”
Surf. Coat. Technol.
,
62
(
1
), pp.
406
411
.
219.
Claerbout
,
V. E. P.
,
Polcar
,
T.
, and
Nicolini
,
P.
,
2019
, “
Superlubricity Achieved for Commensurate Sliding: MoS2 Frictional Anisotropy in Silico
,”
Comput. Mater. Sci.
,
163
, pp.
17
23
.
220.
Li
,
H.
,
Wang
,
J.
,
Gao
,
S.
,
Chen
,
Q.
,
Peng
,
L.
,
Liu
,
K.
, and
Wei
,
X.
,
2017
, “
Superlubricity Between MoS2 Monolayers
,”
Adv. Mater.
,
29
(
27
), p.
1701474
.
221.
Hu
,
L.
,
Wang
,
J.
,
Hou
,
K.
, and
Yang
,
S.
,
2019
, “
Robust Ultralow Friction Between Graphene and Octadecyltrichlorosilane Self-Assembled Monolayers
,”
Appl. Surf. Sci.
,
475
, pp.
389
396
.
222.
Li
,
J.
,
Cao
,
W.
,
Li
,
J.
,
Ma
,
M.
, and
Luo
,
J.
,
2019
, “
Molecular Origin of Superlubricity Between Graphene and a Highly Hydrophobic Surface in Water
,”
J. Phys. Chem. Lett.
,
10
(
11
), pp.
2978
2984
.
223.
Jiang
,
B.
,
Zhao
,
Z.
,
Gong
,
Z.
,
Wang
,
D.
,
Yu
,
G.
, and
Zhang
,
J.
,
2020
, “
Superlubricity of Metal–Metal Interface Enabled by Graphene and MoWS4 Nanosheets
,”
Appl. Surf. Sci.
,
520
, p.
146303
.
224.
Ge
,
X.
,
Li
,
J.
,
Wang
,
H.
,
Zhang
,
C.
,
Liu
,
Y.
, and
Luo
,
J.
,
2019
, “
Macroscale Superlubricity Under Extreme Pressure Enabled by the Combination of Graphene-Oxide Nanosheets With Ionic Liquid
,”
Carbon
,
151
, pp.
76
83
.
225.
Yi
,
S.
,
Li
,
J.
,
Liu
,
Y.
,
Ge
,
X.
,
Zhang
,
J.
, and
Luo
,
J.
,
2021
, “
In-Situ Formation of Tribofilm With Ti3C2Tx MXene Nanoflakes Triggers Macroscale Superlubricity
,”
Tribol. Int.
,
154
, p.
106695
.
226.
Huang
,
S.
,
Mutyala
,
K. C.
,
Sumant
,
A. V.
, and
Mochalin
,
V. N.
,
2021
, “
Achieving Superlubricity With 2D Transition Metal Carbides (MXenes) and MXene/Graphene Coatings
,”
Mater. Today Adv.
,
9
, p.
100133
.
227.
Abbasipour
,
B.
,
Niroumand
,
B.
,
Monir Vaghefi
,
S. M.
, and
Abedi
,
M.
,
2019
, “
Tribological Behavior of A356−CNT Nanocomposites Fabricated by Various Casting Techniques
,”
Trans. Nonferrous Met. Soc. China
,
29
(
10
), pp.
1993
2004
.
228.
Kis
,
A.
,
Jensen
,
K.
,
Aloni
,
S.
,
Mickelson
,
W.
, and
Zettl
,
A.
,
2006
, “
Interlayer Forces and Ultralow Sliding Friction in Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
,
97
(
2
), p.
025501
.
229.
Zhang
,
R.
,
Ning
,
Z.
,
Zhang
,
Y.
,
Zheng
,
Q.
,
Chen
,
Q.
,
Xie
,
H.
,
Zhang
,
Q.
,
Qian
,
W.
, and
Wei
,
F.
,
2013
, “
Superlubricity in Centimetres-Long Double-Walled Carbon Nanotubes Under Ambient Conditions
,”
Nat. Nanotechnol.
,
8
(
12
), pp.
912
916
.
230.
Sammalkorpi
,
M.
,
Krasheninnikov
,
A.
,
Kuronen
,
A.
,
Nordlund
,
K.
, and
Kaski
,
K.
,
2004
, “
Mechanical Properties of Carbon Nanotubes With Vacancies and Related Defects
,”
Phys. Rev. B
,
70
(
24
), p.
245416
.
231.
Xu
,
H.
,
Al-Ghalith
,
J.
, and
Dumitrică
,
T.
,
2018
, “
Smooth Sliding and Superlubricity in the Nanofriction of Collapsed Carbon Nanotubes
,”
Carbon
,
134
, pp.
531
535
.
232.
Li
,
J.
,
Ge
,
X.
, and
Luo
,
J.
,
2018
, “
Random Occurrence of Macroscale Superlubricity of Graphite Enabled by Tribo-Transfer of Multilayer Graphene Nanoflakes
,”
Carbon
,
138
, pp.
154
160
.
You do not currently have access to this content.