Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This study presents the design and development of a new hydrodynamic thrust bearing test rig with a novel hydrodynamic pressure feedback bearing alignment control system. The bearing alignment system maintains an even distribution of thrust load across the bearing thrust pads using active hydrodynamic pressure as input to manipulate bearing orientation with stepper motors. The test rig is used to conduct a performance evaluation of fixed geometry hydrodynamic thrust bearings with variable taper depths. The influence of helical taper angle, rotational speed, and applied load on key performance characteristics including minimum oil film thickness (MOFT), hydrodynamic pressure distribution, and bearing temperature is presented and analyzed. A numerical model based on the Reynolds equation is used to support the experimental results obtained. Trends in performance established by the numerical analysis show mutually agreeable results compared to experimental data. The average percent deviation of the experimentally gathered change in MOFT as load is increased with respect to the numerically predicted values is 24%. A comparison of experimental to numerical pressure distribution data shows an overall average percent deviation of 32%.

References

1.
Myers
,
K.
,
Jenson
,
S.
,
Brooksbank
,
M.
,
Ali
,
M.
,
Alam
,
K.
,
Choi
,
J.
,
Wilhelm
,
J.
,
Gillespie
,
J.
, and
Walker
,
R.
,
2016
, “
Performance Evaluation of Thrust Washer Bearings Using a Customized Bench Scale Test Rig
,”
ASME 2016 International Mechanical Engineering Congress and Exposition
,
Phoenix, AZ
,
American Society of Mechanical Engineers Digital Collection
, pp.
1
5
.
2.
Iruikwu
,
D.
,
Isomaa
,
J. M.
,
Korkolainen
,
P.
,
Kiviluoma
,
P.
,
Kuosmanen
,
P.
, and
Calonius
,
O.
,
2012
, “
Dynamic Loading System for Air Bearing Testing
,”
Proceedings of the 8th International Conference of DAAAM Baltic Conference
,
Tallinn, Estonia
, pp.
309
314
.
3.
Fais
,
C.
,
Ali
,
M.
,
Yasko
,
I.
,
Walker
,
R.
, and
Lutfullaeva
,
A.
,
2021
, “
Experimental Performance Evaluation of Fixed-Geometry Hydrodynamic Thrust Bearings With Variable Taper Depths
,”
Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications
,
American Society of Mechanical Engineers
, Virtual, Online, p.
V003T03A065
.
4.
Fais
,
C.
,
Yasko
,
I.
,
Lutfullaeva
,
A.
,
Ali
,
M.
, and
Walker
,
R.
,
2022
, “
Experimental Investigation of Fixed-Geometry Thrust Bearing Taper Geometry on Critical Operating Parameters
,”
Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology
,
American Society of Mechanical Engineers
,
Columbus, OH
, p.
V003T03A055
.
5.
Dadouche
,
A.
,
Fillon
,
M.
, and
Bligoud
,
J. C.
,
2000
, “
Experiments on Thermal Effects in a Hydrodynamic Thrust Bearing
,”
Tribol. Int.
,
33
(
3–4
), pp.
167
174
.
6.
Dadouche
,
A.
,
Fillon
,
M.
, and
Dmochowski
,
W.
,
2006
, “
Performance of a Hydrodynamic Fixed Geometry Thrust Bearing: Comparison Between Experimental Data and Numerical Results
,”
Tribol. Trans.
,
49
(
3
), pp.
419
426
.
7.
Henry
,
Y.
,
Bouyer
,
J.
, and
Fillon
,
M.
,
2014
, “
An Experimental Hydrodynamic Thrust Bearing Device and Its Application to the Study of a Tapered-Land Thrust Bearing
,”
ASME J. Tribol.
,
136
(
2
), p.
021703
.
8.
Henry
,
Y.
,
Bouyer
,
J.
, and
Fillon
,
M.
,
2018
, “
Experimental Analysis of the Hydrodynamic Effect During Start-Up of Fixed Geometry Thrust Bearings
,”
Tribol. Int.
,
120
, pp.
299
308
.
9.
Frene
,
J.
,
1978
, “
Tapered Land Thrust Bearing Operating in Both Laminar and Turbulent Regimes
,”
ASLE Trans.
,
21
(
3
), pp.
243
249
.
10.
Cross
,
A. T.
,
Sadeghi
,
F.
,
Rateick
,
R. G.
, and
Rowan
,
S.
,
2013
, “
Hydrodynamic Pressure Generation in a Pocketed Thrust Washer
,”
Tribol. Trans.
,
56
(
4
), pp.
652
662
.
11.
Cross
,
A. T.
,
Sadeghi
,
F.
,
Rateick
,
R. G.
,
Rowan
,
S.
, and
Laboda
,
D.
,
2015
, “
Temperature Distribution in Pocketed Thrust Washers
,”
Tribol. Trans.
,
58
(
1
), pp.
31
43
.
12.
Fouflias
,
D. G.
,
Charitopoulos
,
A. G.
,
Papadopoulos
,
C. I.
,
Kaiktsis
,
L.
, and
Fillon
,
M.
,
2015
, “
Performance Comparison Between Textured, Pocket, and Tapered-Land Sector-Pad Thrust Bearings Using Computational Fluid Dynamics Thermohydrodynamic Analysis
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
229
(
4
), pp.
376
397
.
13.
Harika
,
E.
,
Bouyer
,
J.
,
Fillon
,
M.
, and
Helene
,
M.
,
2012
, “
Measurements of Lubrication Characteristics of a Tilting Pad Thrust Bearing Disturbed by a Water-Contaminated Lubricant
,”
J. Eng. Tribol.
,
227
(
1
), pp.
16
25
.
14.
Da browski
,
L.
, and
Wasilczuk
,
M.
,
1995
, “
A Method of Friction Torque Measurement for a Hydrodynamic Thrust Bearing
,”
ASME J. Tribol.
,
117
(
4
), pp.
674
678
.
15.
Etsion
,
I.
,
Halperin
,
G.
,
Brizmer
,
V.
, and
Kligerman
,
Y.
,
2004
, “
Experimental Investigation of Laser Surface Textured Parallel Thrust Bearings
,”
Tribol. Lett.
,
17
(
2
), pp.
295
300
.
16.
Marian
,
V. G.
,
Kilian
,
M.
, and
Scholz
,
W.
,
2007
, “
Theoretical and Experimental Analysis of a Partially Textured Thrust Bearing With Square Dimples
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
221
(
7
), pp.
771
778
.
17.
Marian
,
V. G.
,
Gabriel
,
D.
,
Knoll
,
G.
, and
Filippone
,
S.
,
2011
, “
Theoretical and Experimental Analysis of a Laser Textured Thrust Bearing
,”
Tribol. Lett.
,
44
(
3
), pp.
335
343
.
18.
Jackson
,
R. L.
, and
Green
,
I.
,
2001
, “
Study of the Tribological Behavior of a Thrust Washer Bearing
,”
Tribol. Trans.
,
44
(
3
), pp.
504
508
.
19.
Jackson
,
R. L.
, and
Green
,
I.
,
2003
, “
Experimental Analysis of the Wear, Life and Behavior Pf PTFE Coated Thrust Washer Bearings Under Non-Axisymmatric Loading
,”
Tribol. Trans.
,
46
(
4
), pp.
600
607
.
20.
Jackson
,
R. L.
, and
Green
,
I.
,
2007
, “
An Experimental Investigation of Various Materials on Thrust Washer Bearing Operation
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
221
(
7
), pp.
761
770
.
21.
Glavatskih
,
S. B.
,
Fillon
,
M.
, and
Larsson
,
R.
,
2002
, “
The Significance of Oil Thermal Properties on the Performance of a Tilting-Pad Thrust Bearing
,”
ASME J. Tribol.
,
124
(
2
), pp.
377
385
.
22.
Glavatskih
,
S. B.
,
Uusitalo
,
O.
, and
Spohn
,
D. J.
, “
Simulataneous Monitoring of Oil Film Thickness and Temperature in Fluid Film Bearings
,”
Tribol. Int.
,
34
(
12
), pp.
853
857
.
23.
Glavatskih
,
S. B.
, and
Fillon
,
M.
,
2006
, “
TEHD Analysis of Thrust Bearings With PTFE-Faced Pads
,”
ASME J. Tribol.
,
128
(
1
), pp.
49
58
.
24.
Sharma
,
R. K.
, and
Pandey
,
R. K.
,
2009
, “
Experimental Studies of Pressure Distributions in Finite Slider Bearing With Single Continuous Surface Profiles on the Pads
,”
Tribol. Int.
,
42
(
7
), pp.
1040
1045
.
25.
Najar
,
F. A.
, and
Harmain
,
G. A.
,
2014
, “
Numerical Investigation of Pressure Profile in Hydrodynamic Lubrication Thrust Bearing
,”
Int. Sch. Res. Not.
,
2014
, pp.
1
8
.
26.
Srikanth
,
D.
,
Chaturvedi
,
K.
, and
Reddy
,
C. K.
,
2015
, “
Theoretical Evaluation of Operational Characteristics in a Large Thrust Bearing
,”
Tribol. Online
,
10
(
5
), pp.
336
343
.
27.
Wodtke
,
M.
,
Fillon
,
M.
,
Schubert
,
A.
, and
Wasilczuk
,
M.
,
2013
, “
Study of the Influence of Heat Convection Coefficient on Predicted Performance of a Large Tilting-Pad Thrust Bearing
,”
ASME J. Tribol.
,
135
(
2
), p.
021702
.
28.
Missana
,
A.
,
Booser
,
E. R.
,
ASLE
, and
Ryan
,
F. D.
,
2016
, “
Performance of Tapered Land Thrust Bearings for Large Steam Turbines
,”
ASLE Trans.
,
14
(
4
), pp.
301
306
.
29.
Hirani
,
H.
,
2012
,
Mechanical Tribology—Lectures 19-23
,
IIT Delhi, Department of Mechanical Engineering
,
New Delhi, India
.
30.
Bhushan
,
B.
,
2013
,
Principles and Applications of Tribology
,
Wiley, John Wiley & Sons Inc.
,
Hoboken, NJ
.
You do not currently have access to this content.