Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In practice, even the tiny relative reciprocating motion generated by external load or environmental vibration can cause interface wear. In this work, three-dimensional (3D) finite element analysis (FEA) is used to investigate the fretting wear between deformable crossed parabolic cylinders. Fretting is achieved by the application of a periodic displacement-controlled load, while the contact pair is defined as the same material, i.e., carbon steel/carbon steel, copper alloy/copper alloy, and aluminum alloy/aluminum alloy. Meanwhile, three different axis crossing angles are also studied, i.e., 45 deg, 60 deg, and 90 deg. Originally, a wide range of coefficients of friction (COFs) are applied to the interface without considering the damage. The results show that, when the COF is sufficiently large (μ = 1), the junction growth and the tangential load increase significantly in the first loading cycle, but then become gradually stable. Subsequently, the Archard wear model is applied to the frictional interface. Empirical equations for the initial gross slip distance and the wear volume at the end of the partial slip are established in turn. Furthermore, an empirical equation for the wear volume of a single fretting cycle is established, which is in good agreement with the FEA results. Finally, the effect of relevant parameters on the wear volume for a single fretting cycle under elastic condition is discussed, but also the evolution of wear volume in the early stage of cyclic fretting. All the results are normalized, enabling their application to the 3D fretting wear of other material pairs.

References

1.
Waterhouse
,
R. B.
,
1992
, “
Fretting Fatigue
,”
Int. Mater. Rev.
,
37
(
1
), pp.
77
98
.
2.
Vincent
,
L.
,
Berthier
,
Y.
,
Dubourg
,
M. C.
, and
Godet
,
M.
,
1992
, “
Mechanics and Materials in Fretting
,”
Wear
,
153
(
1
), pp.
135
148
.
3.
Tomlinson
,
G. A.
,
1927
, “
The Rusting of Steel Surfaces in Contact
,”
Proc. R. Soc. A
,
115
(
771
), pp.
472
483
.
4.
Berthier
,
Y.
,
Vincent
,
L.
, and
Godet
,
M.
,
1989
, “
Fretting Fatigue and Fretting Wear
,”
Tribol. Int.
,
22
(
4
), pp.
235
242
.
5.
Berthier
,
Y.
,
Colombié
,
C.
,
Vincent
,
L.
, and
Godet
,
M.
,
1988
, “
Fretting Wear Mechanisms and Their Effects on Fretting Fatigue
,”
ASME J. Tribol.
,
110
(
3
), pp.
517
524
.
6.
Vingsbo
,
O.
, and
Söderberg
,
S.
,
1988
, “
On Fretting Maps
,”
Wear
,
126
(
2
), pp.
131
147
.
7.
Zhou
,
Z. R.
, and
Vincent
,
L.
,
1995
, “
Mixed Fretting Regime
,”
Wear
,
181
, pp.
531
536
.
8.
Courtney-Pratt
,
J. S.
, and
Eisner
,
E.
,
1957
, “
The Effect of a Tangential Force on the Contact of Metallic Bodies
,”
Proc. R. Soc. London, A
,
238
(
1215
), pp.
529
550
.
9.
Parker
,
R. C.
, and
Hatch
,
D.
,
1950
, “
The Static Coefficient of Friction and the Area of Contact
,”
Proc. Phys. Soc. Sect. B
,
63
(
3
), pp.
185
197
.
10.
Tabor
,
D.
,
1959
, “
Junction Growth in Metallic Friction: The Role of Combined Stresses and Surface Contamination
,”
Proc. R. Soc. London, A
,
251
(
1266
), pp.
378
393
.
11.
Ovcharenko
,
A.
, and
Etsion
,
I.
,
2009
, “
Junction Growth and Energy Dissipation at the Very Early Stage of Elastic-Plastic Spherical Contact Fretting
,”
ASME J. Tribol.
,
131
(
3
), p.
031602
.
12.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.
13.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
1953
, “
Elastic Spheres in Contact Under Varying Oblique Forces
,”
ASME J. Appl. Mech.
,
20
(
3
), pp.
327
344
.
14.
Ciavarella
,
M.
,
1998
, “
Tangential Loading of General Three-Dimensional Contacts
,”
ASME J. Appl. Mech.
,
65
(
4
), pp.
998
1003
.
15.
Wu
,
A. Z.
,
Shi
,
X.
, and
Polycarpou
,
A. A.
,
2012
, “
An Elastic-Plastic Spherical Contact Model Under Combined Normal and Tangential Loading
,”
ASME J. Appl. Mech.
,
79
(
5
), p.
051001
.
16.
Ambrico
,
J. M.
, and
Begley
,
M. R.
,
2000
, “
Plasticity in Fretting Contact
,”
J. Mech. Phys. Solids
,
48
(
11
), pp.
2391
2417
.
17.
Guo
,
T. N.
,
Shi
,
H.
,
Ji
,
R. G.
,
Li
,
B.
, and
Wang
,
C. H.
,
2024
, “
Analysis of Displacement-Controlled Fretting Between Crossed Parabolic Cylinders in Elasto-Plastic Contacts
,”
ASME J. Tribol.
,
146
(
2
), p.
021702
.
18.
Yang
,
H. D.
, and
Green
,
I.
,
2019
, “
Analysis of Displacement-Controlled Fretting Between a Hemisphere and a Flat Block in Elasto-Plastic Contacts
,”
ASME J. Tribol.
,
141
(
3
), p.
031401
.
19.
Zhou
,
Z. R.
,
Nakazawa
,
K.
,
Zhu
,
M. H.
,
Maruyama
,
N.
,
Kapsa
,
P.
, and
Vincent
,
L.
,
2006
, “
Progress in Fretting Maps
,”
Tribol. Int.
,
39
(
10
), pp.
1068
1073
.
20.
Kim
,
D. G.
, and
Lee
,
Y. Z.
,
2001
, “
Experimental Investigation on Sliding and Fretting Wear of Steam Generator Tube Materials
,”
Wear
,
250
(
1–12
), pp.
673
680
.
21.
Chen
,
G. X.
, and
Zhou
,
Z. R.
,
2001
, “
Study on Transition Between Fretting and Reciprocating Sliding Wear
,”
Wear
,
250
(
1–12
), pp.
665
672
.
22.
McColl
,
I. R.
,
Ding
,
J.
, and
Leen
,
S. B.
,
2004
, “
Finite Element Simulation and Experimental Validation of Fretting Wear
,”
Wear
,
256
(
11–12
), pp.
1114
1127
.
23.
Ding
,
J.
,
Leen
,
S. B.
, and
McColl
,
I. R.
,
2004
, “
The Effect of Slip Regime on Fretting Wear-Induced Stress Evolution
,”
Int. J. Fatigue
,
26
(
5
), pp.
521
531
.
24.
Mei
,
J. N.
,
Xue
,
F.
,
Huang
,
L.
,
Wang
,
Z. X.
,
Zhang
,
G. D.
,
Shu
,
G. G.
,
Li
,
J. S.
, and
Fu
,
H. Z.
,
2013
, “
Finite Element Analysis of Fretting Wear for Nuclear Inconel 690 Alloy
,”
Adv. Mater. Res.
,
772
, pp.
77
82
.
25.
Johnson
,
K. L.
,
1955
, “
Surface Interaction Between Elastically Loaded Bodies Under Tangential Forces
,”
Proc. R. Soc. London, A
,
230
(
1183
), pp.
531
548
.
26.
Popov
,
V. L.
, and
Heß
,
M.
,
2015
,
Method of Dimensionality Reduction in Contact Mechanics and Friction
,
Springer
,
Berlin, Heidelberg
.
27.
Yang
,
H. D.
, and
Green
,
I.
,
2022
, “
An Analytical Solution for the Initiation and Early Progression of Fretting Wear in Spherical Contacts
,”
ASME J. Tribol.
,
144
(
4
), p.
041501
.
28.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L.
,
2010
, “
Physics-Based Modeling for Partial Slip Behavior of Spherical Contacts
,”
Int. J. Solids Struct.
,
47
(
18–19
), pp.
2554
2567
.
29.
Kapoor
,
A.
, and
Johnson
,
K. L.
,
1992
, “
Effect of Changes in Contact Geometry on Shakedown of Surfaces in Rolling/Sliding Contact
,”
Int. J. Mech. Sci.
,
34
(
3
), pp.
223
239
.
30.
Li
,
Z.
,
Zhu
,
M. H.
, and
Zhou
,
Z. R.
,
2005
, “
Study on Composite Fretting Wear Behaviors of 60Si2Mn Steel
,”
J. Mech. Eng.
,
41
(
1
), pp.
203
207
.
31.
Zmitrowicz
,
A.
,
2006
, “
Wear Patterns and Laws of Wear—A Review
,”
J. Theor. Appl. Mech.
,
44
(
2
), pp.
219
253
.
32.
Archard
,
J.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
33.
Archard
,
J. F.
, and
Hirst
,
W.
,
1956
, “
The Wear of Metals Under Unlubricated Conditions
,”
Proc. R. Soc. London, A
,
236
(
1206
), pp.
397
410
.
34.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.
35.
Guo
,
T. N.
,
Ji
,
R. G.
,
Peng
,
L. W.
, and
Hua
,
X.
,
2022
, “
Analysis of Tangential Characteristics of the Paraboloidal Contact Model
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
236
(
11
), pp.
6152
6169
.
36.
Green
,
I.
,
2005
, “
Poisson Ratio Effects and Critical Valus in Spherical and Cylindrical Hertzian Contacts
,”
Int. J. Appl. Mech. Eng.
,
10
(
3
), p.
451
.
37.
Goryacheva
,
I. G.
,
Rajeev
,
P. T.
, and
Farris
,
T. N.
,
2001
, “
Wear in Partial Slip Contact
,”
ASME J. Tribol.
,
123
(
4
), pp.
848
856
.
38.
Cattaneo
,
C.
,
1938
, “
Sul Contatto di due Corpi Elasticie: Distribution Locale Degli Sforzi
,”
Rend. Accad. Naz. Lincei
,
27
, pp.
474
478
.
39.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
(
3
), pp.
259
268
.
40.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
41.
Vermeulen
,
P. J.
, and
Johnson
,
K. L.
,
1964
, “
Contact of Nonspherical Elastic Bodies Transmitting Tangential Forces
,”
ASME J. Tribol.
,
31
(
2
), pp.
338
340
.
42.
Jahnke
,
E.
,
1945
,
Tables of Functions With Formulae and Curves
,
Dover Publications
,
New York
.
43.
Popov
,
V. L.
,
2010
,
Contact Mechanics and Friction
,
Springer
,
Berlin, Heidelberg
.
You do not currently have access to this content.