Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The temperature rises of the oil film in hydrostatic bearings at high speed lead to a reduction in load capacity, accuracy, and stability. In this paper, a superhydrophobic/oleophobic surface with a micro-bulge structure is proposed. The surface is prepared by laser cross-scanning and chemical modification. The contact angle (CA) of the surface is 138 deg and the boundary condition of the surface is modified from non-slip to slip condition. The relationship between the slip length and the height of the micro-bulge structure is established by rheological experiments. By the simple partial simulations, the validity of the temperature rise reduction on the superhydrophobic/oleophobic surface is verified. Then a bearing test rig was set up to measure the temperature and load capacity of bearings at multiple points, and the performance of smooth primary surface/structured oleophobic surface thrust bearings was compared. Results show that the structured bearing has a lower oil film temperature and higher load capacity than the smooth bearing. The prepared oleophobic surface can effectively suppress the temperature rise at high-speed conditions and significantly increase the bearing load capacity.

References

1.
Jiang
,
S.
, and
Mao
,
H.
,
2011
, “
Investigation of the High Speed Rolling Bearing Temperature Rise With Oil-Air Lubrication
,”
ASME J. Tribol.
,
133
(
2
), p.
021101
.
2.
Sudeep
,
U.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2015
, “
Performance of Lubricated Rolling/Sliding Concentrated Contacts With Surface Textures: A Review
,”
ASME J. Tribol.
,
137
(
3
), p.
031501
.
3.
Yu
,
M.
,
Yu
,
X.
,
Zheng
,
X.
, and
Jiang
,
H.
,
2019
, “
Thermal-Fluid-Solid Coupling Deformation of Hydrostatic Thrust Bearing Friction Pairs
,”
Ind. Lubr. Tribol.
,
71
(
3
), pp.
467
473
.
4.
Zuo
,
X.
,
Wang
,
J.
,
Yin
,
Z.
, and
Li
,
S.
,
2013
, “
Performance Analysis of Multirecess Angled-Surface Slot-Compensated Conical Hydrostatic Bearing
,”
ASME J. Tribol.
,
135
(
4
), p.
041701
.
5.
Jeng
,
Y.
, and
Gao
,
C.
,
2001
, “
Investigation of the Ball-Bearing Temperature Rise Under an Oil-Air Lubrication System
,”
Proc. Inst. Mech. Eng. J J. Eng. Tribol.
,
215
(
2
), pp.
139
148
.
6.
Ramos D
,
J.
, and
Daniel G
,
B.
,
2022
, “
Microgroove Optimization to Improve Hydrodynamic Bearing Performance
,”
Tribol. Int.
,
174
, p.
107667
.
7.
Wang
,
C.
, and
Lin
,
J.
,
2022
, “
Numerical Study of Hydrodynamic Herringbone-Grooved Journal Bearings Combined With Thrust Bearings Considering Thermal Effects
,”
J. Mech.
,
38
, pp.
13
21
.
8.
Fillon
,
M.
, and
Bouyer
,
J.
,
2004
, “
Thermohydrodynamic Analysis of a Worn Plain Journal Bearing
,”
Tribol. Int.
,
37
(
2
), pp.
129
136
.
9.
Henry
,
Y.
,
Bouyer
,
J.
, and
Fillon
,
M.
,
2015
, “
An Experimental Analysis of the Hydrodynamic Contribution of Textured Thrust Bearings During Steady-State Operation: A Comparison With the Untextured Parallel Surface Configuration
,”
Proc. Inst. Mech. Eng. J J. Eng. Tribol.
,
229
(
4
), pp.
362
375
.
10.
Henry
,
Y.
,
Bouyer
,
J.
, and
Fillon
,
M.
,
2014
, “
An Experimental Hydrodynamic Thrust Bearing Device and Its Application to the Study of a Tapered-Land Thrust Bearing
,”
ASME J. Tribol.
,
136
(
2
), p.
021703
.
11.
Henry
,
Y.
,
Bouyer
,
J.
, and
Fillon
,
M.
,
2018
, “
Experimental Analysis of the Hydrodynamic Effect During Start-Up of Fixed Geometry Thrust Bearings
,”
Tribol. Int.
,
120
, pp.
299
308
.
12.
Chen
,
D.
,
Sun
,
Y.
,
Sun
,
K.
, and
Jiang
,
H.
,
2022
, “
Computational Fluid Dynamics-Based Investigation of the Static and Dynamic Characteristic of Hydrostatic Bearing With Nanolubricant: A Theoretical Method
,”
Proc. Inst. Mech. Eng. E J. Proc. Mech. Eng.
,
237
(
6
), pp.
445
451
.
13.
Aurelian
,
F.
,
Patrick
,
M.
, and
Mohamed
,
H.
,
2011
, “
Wall Slip Effects in (Elasto) Hydrodynamic Journal Bearings
,”
Tribol. Int.
,
44
(
7–8
), pp.
868
877
.
14.
Shaw
,
D.
, and
Hsieh
,
H.
,
2019
, “
Hydrostatic Journal Bearing With Porous Pads and Improved Properties
,”
ASME J. Tribol.
,
141
(
12
), p.
121701
.
15.
Bailey
N. Y.
,
2016
, “
Dynamics of a High Speed Coned Thrust Bearing With a Navier Slip Boundary Condition
,”
J. Eng. Math.
,
97
(
1
), pp.
1
24
.
16.
Bailey
,
N. Y.
,
Cliffe
,
K. A.
,
Hibberd
,
S.
, and
Power
,
H.
,
2015
, “
Dynamics of a Parallel, High-Speed, Lubricated Thrust Bearing With Navier Slip Boundary Conditions
,”
IMA J. Appl. Math.
,
80
(
5
), pp.
1409
1430
.
17.
Yang
,
C.
,
Yang
,
C.
,
Sung
,
C.
, and
Huang
,
C.-Y.
,
2014
, “
Design of Slip Boundary Produced by a Lotus Structure Applied to a Hydrostatic Bearing
,”
Tribol. Lett.
,
55
(
1
), pp.
55
64
.
18.
Chen
,
D.
,
Gao
,
X.
,
Zha
,
C.
,
Pan
,
R.
, and
Fan
,
J.
,
2020
, “
Tilt Angle of Hydrostatic Spindle Influenced by Microscale Effects
,”
Tribol. Trans.
,
63
(
1
), pp.
28
37
.
19.
Chen
,
D.
,
Zhou
,
S.
,
Dong
,
L.
, and
Fan
,
J.
,
2015
, “
Performance Evaluation and Comparative Analysis of Hydrostatic Spindle Affect by the Oil Film Slip
,”
J. Manuf. Processes
,
20
, pp.
128
136
.
20.
Shang
,
Y.
,
Cheng
,
K.
,
Bai
,
Q.
, and
Chen
,
S.
,
2022
, “
Drag Reduction Analysis of the Hydrostatic Bearing With Surface Micro Textures
,”
Appl. Sci.
,
12
(
21
), p.
10831
.
21.
Zhang
,
H.
,
Liu
,
Y.
,
Dai
,
S.
,
Li
,
F.
, and
Dong
,
G.
,
2022
, “
Optimization of Boundary Slip Region on Bearing Sliders to Improve Tribological Performance
,”
Tribol. Int.
,
168
, p.
107446
.
22.
Wang
,
Y.
,
Zhang
,
J.
,
Li
,
K.
, and
Hu
,
J.
,
2021
, “
Surface Characterization and Biocompatibility of Isotropic Microstructure Prepared by UV Laser
,”
J. Mater. Sci. Technol.
,
94
, pp.
136
146
.
23.
Guo
,
M.
,
Zhang
,
G.
,
Xin
,
G.
,
Huang
,
H.
,
Huang
,
Y.
,
Rong
,
Y.
, and
Wu
,
C.
,
2023
, “
Laser Direct Writing of Rose Petal Biomimetic Micro-Bulge Structure to Realize Superhydrophobicity and Large Slip Length
,”
Colloids Surf., A
,
664
, p.
130972
.
24.
Xin
,
G.
,
Wu
,
C.
,
Cao
,
H.
,
Liu
,
W.
,
Li
,
B.
,
Huang
,
Y.
,
Rong
,
Y.
, and
Zhang
,
G.
,
2021
, “
Superhydrophobic TC4 Alloy Surface Fabricated by Laser Micro-Scanning to Reduce Adhesion and Drag Resistance
,”
Surf. Coat. Technol.
,
391
, p.
125707
.
25.
Ahmmed K
,
M.
, and
Kietzig A
,
M.
,
2016
, “
Drag Reduction on Laser-Patterned Hierarchical Superhydrophobic Surfaces
,”
Soft Matter
,
12
(
22
), pp.
4912
4922
.
26.
Wang
,
K.
,
Zhang
,
Y.
, and
Yu
,
Y.
,
2015
, “
Simulation of Boundary Slip on a Liquid-Solid Surface Based on the Lattice Boltzmann Method
,”
Sci. Asia
,
41
(
2
), pp.
130
135
.
27.
Martell
,
M. B.
,
Perot
,
J. B.
, and
Rothstein
,
J. P.
,
2009
, “
Direct Numerical Simulations of Turbulent Flows Over Superhydrophobic Surfaces
,”
J. Fluid Mech.
,
620
, pp.
31
41
.
28.
Park
,
H.
, and
Kim
,
J.
,
2013
, “
A Numerical Study of the Effects of Superhydrophobic Surface on Skin-Friction Drag in Turbulent Channel Flow
,”
Phys. Fluid
,
25
(
11
), pp.
1
11
.
29.
Jing
,
D.
, and
Bhushan
,
B.
,
2013
, “
Boundary Slip of Superoleophilic, Oleophobic, and Superoleophobic Surfaces Immersed in Deionized Water, Hexadecane, and Ethylene Glycol
,”
Langmuir
,
29
(
47
), pp.
14691
14700
.
30.
Tang
,
L.
,
Wang
,
N.
,
Han
,
Z.
,
Sun
,
H.
, and
Xiong
,
D.
,
2020
, “
Robust Superhydrophobic Surface With Wrinkle-Like Structures on AZ31 Alloy That Repels Viscous Oil and Investigations of the Anti-Icing Property
,”
Colloids Surf., A
,
594
, p.
124655
.
31.
Cool
,
N.
,
Douglas
,
L.
,
Gupta
,
S.
, and
Banerjee
,
S.
,
2020
, “
Hierarchically Textured Oleophobic Internal Coatings That Facilitate Drag Reduction of Viscous Oils in Macroscopic Laminar Flow
,”
Adv. Eng. Mater.
,
22
(
8
), p.
2000333
.
32.
Zhang
,
C.
,
Chen
,
S.
,
Wang
,
J.
,
Shi
,
Z.
, and
Du
,
L.
,
2022
, “
Reproducible Flexible SERS Substrates Inspired by Bionic Micro-Nano Hierarchical Structures of Rose Petals
,”
Adv. Mater. Interfaces
,
9
(
13
), p.
2102468
.
33.
Shao
,
J.
,
Huang
,
Y.
,
Zhao
,
M.
,
Yang
,
Y.
,
Zheng
,
Y.
, and
Zhu
,
R.
,
2022
, “
Molecular Dynamics Simulation on the Wettability of Nanoscale Wrinkles: High Water Adhesion of Rose Petals
,”
Langmuir
,
38
(
29
), pp.
8854
8861
.
34.
Wang
,
L.
,
Shi
,
B.
,
Zhao
,
H.
,
Qi
,
X.
,
Chen
,
J.
,
Li
,
J.
,
Shang
,
Y.
, et al
,
2022
, “
3D-Printed Parahydrophobic Functional Textile With a Hierarchical Nanomicroscale Structure
,”
ACS Nano
,
16
(
10
), pp.
16645
16654
.
35.
Hu
,
J.
,
Fang
,
Z.
,
Huang
,
Y.
, and
Lu
,
J.
,
2021
, “
Fabrication of Superhydrophobic Surfaces Based on Fluorosilane and TiO2/SiO2 Nanocomposites
,”
Surf. Eng.
,
37
(
3
), pp.
271
277
.
36.
Zhu
,
Q.
,
Teng
,
F.
,
Wang
,
Z.
,
Wang
,
Y.
, and
Lu
,
N.
,
2019
, “
Superhydrophobic Glass Substrates Coated With Fluorosilane-Coated Silica Nanoparticles and Silver Nanoparticles for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry
,”
ACS Appl. Nano Mater.
,
2
(
6
), pp.
3813
3818
.
37.
Didem
,
O.
, and
Thomas
,
J. M.
,
2000
, “
Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability
,”
Langmuir
,
16
(
20
), pp.
7777
7782
.
38.
Navier
,
C.
,
1823
,
MéMoire sur les Lois du Mouvement des Fluids
,
Mémoires de l'Académie Royale des Sciences de l'Institut
,
France
, pp.
389
440
.
39.
Maxwell
,
J.
,
1879
, “
On Stresses in Rarefied Gases Arising from Inequalities of Temperature
,”
Philos. Trans. R. Soc. London
,
170
, pp.
231
256
.
40.
Vinogradova O
,
I.
,
1995
, “
Drainage of a Thin Liquid Film Confined Between Hydrophobic Surfaces
,”
Langmuir
,
11
(
6
), pp.
2213
2220
.
41.
Chen
,
Y.
,
1980
,
Principle and Design of Hydrostatic Bearings
,
National Defence Industry Press
,
China
, pp.
86
87
.
42.
Walters R
,
C.
,
Fini E
,
H.
, and
Lebdeh T
,
A.
,
2014
, “
Enhancing Asphalt Rheological Behavior and Aging Susceptibility Using Bio-Char and Nano-Clay
,”
Am. J. Eng. Appl. Sci.
,
7
(
1
), pp.
66
76
.
43.
Lawson
,
J.
, and
Dawson
,
J.
,
2015
, “
On Velocity Gradient Dynamics and Turbulent Structure
,”
J. Fluid Mech.
,
780
, pp.
60
98
.
44.
James
,
M.
,
2009
, “
Twenty Years of Experimental and Direct Numerical Simulation Access to the Velocity Gradient Tensor: What Have We Learned About Turbulence?
,”
Phys. Fluid
,
21
(
2
), p.
021301
.
45.
Sunu
,
P. W.
,
Wardana
,
I. N. G.
, and
Sonief
,
A. A.
,
2014
, “
Flow Behavior and Friction Factor in Internally Grooved Pipe Wall
,”
Adv. Stud. Theor. Phys.
,
14
, pp.
643
647
.
46.
Du
,
D.
,
Li
,
Z.
, and
Guo
,
Z.
,
2000
, “
Friction Resistance for gas Flow in Smooth Microtubes
,”
Sci. China Ser. E: Technol. Sci.
,
43
(
2
), pp.
171
177
.
47.
Sha
,
Y.
,
Chen
,
S.
,
Lu
,
C.
, and
Pan
,
W.
,
2022
, “
Difference Between SFMR and SITMR Compensation for Hydrostatic Thrust Bearing
,”
ASME J. Tribol.
,
144
(
4
), p.
041802
.
48.
Frank
,
R.
,
2022
, “
Friction Coefficient Pressure Gradient in Fully Developed Flow
,”
Eurasian J. Chem. Med. Pet. Res.
,
2
, pp.
58
63
.
49.
Saadat
,
N.
, and
Flint W
,
L.
,
1996
, “
Expressions for the Viscosity of Liquid/Vapour Mixtures: Predicted and Measured Pressure Distributions in a Hydrostatic Bearing
,”
Proc. Inst. Mech. Eng. J J. Eng. Tribol.
,
210
(
1
), pp.
75
79
.
You do not currently have access to this content.