Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The present study investigates the effect of post-processing (heat treatment: solutionizing at 850 °C for 2 h with aging at 490 °C for 3 h and cryogenic treatment at −196 °C for 24 h) and the effect of build direction (along the build direction (BD) and perpendicular to the build direction (PBD)) on the wear behavior of maraging steel fabricated by laser powder bed fusion (LPBF). The results are also compared with conventional hot forged samples. The pin-on disc equipment was used to conduct the wear experiments with an EN31 steel disk as the counter body. Heat treatment decreased the wear-rate of LPBF material by 54.78% and 83.84% in BD and PBD, respectively. This is due to the restriction of grain expansion by the Ni-based precipitants in age-hardening treatment. The cryogenic treatment further decreased the wear-rate of LPBF material by 87.84% and 90.9% in BD and PBD, respectively. This significant reduction can be attributed to the change of phase to martensite, as confirmed through microstructure and X-ray diffraction (XRD) analysis. Moreover, hot forged material also obtained a reduced wear-rate after heat and cryogenic treatments. The highest wear resistance was found with the LPBF cryo-treated BD sample due to increased hardness from 388 HV to 640 HV. The worn surface of test samples was examined by using scanning electron microscopy (SEM), energy dispersive X-ray, 3D profilometer, and XRD analysis. Oxidation wear, adhesive wear, and abrasive wear are the predominant wear mechanisms identified using SEM.

References

1.
Javaid
,
M.
,
Haleem
,
A.
,
Singh
,
R. P.
,
Suman
,
R.
, and
Rab
,
S.
,
2021
, “
Role of Additive Manufacturing Applications Towards Environmental Sustainability
,”
Adv. Ind. Eng. Polym. Res.
,
4
(
4
), pp.
312
322
.
2.
Bandyopadhyay
,
A.
,
Traxel
,
K. D.
,
Lang
,
M.
,
Juhasz
,
M.
,
Eliaz
,
N.
, and
Bose
,
S.
,
2022
, “
Alloy Design Via Additive Manufacturing: Advantages, Challenges, Applications and Perspectives
,”
Mater. Today
,
52
(
1
), pp.
207
224
.
3.
Praveena
,
B. A.
,
Lokesh
,
N.
,
Buradi
,
A.
,
Santhosh
,
N.
,
Praveena
,
B. L.
, and
Vignesh
,
R.
,
2022
, “
A Comprehensive Review of Emerging Additive Manufacturing (3D Printing Technology): Methods, Materials, Applications, Challenges, Trends and Future Potential
,”
Mater. Today: Proc.
,
52
(
3
), pp.
1309
1313
.
4.
Durai Murugan
,
P.
,
Vijayananth
,
S.
,
Natarajan
,
M. P.
,
Jayabalakrishnan
,
D.
,
Arul
,
K.
,
Jayaseelan
,
V.
, and
Elanchezhian
,
J.
,
2022
, “
A Current State of Metal Additive Manufacturing Methods: A Review
,”
Mater. Today: Proc.
,
59
(
2
), pp.
1277
1283
.
5.
Bacciaglia
,
A.
,
Ceruti
,
A.
, and
Liverani
,
A.
,
2022
, “
Towards Large Parts Manufacturing in Additive Technologies for Aerospace and Automotive Applications
,”
Proc. Comput. Sci.
,
200
(
1
), pp.
1113
1124
.
6.
Olakanmi
,
E. O.
,
Cochrane
,
R. F.
, and
Dalgarno
,
K. W.
,
2015
, “
A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties
,”
Prog. Mater. Sci.
,
74
(
1
), pp.
401
477
.
7.
Xu
,
Y.
,
Qiu
,
L.
,
Yuan
,
S.
, and
Wang
,
Y.
,
2022
, “
Research on Shape Memory Alloy Honeycomb Structures Fabricated by Selective Laser Melting Additive Manufacturing
,”
Opt. Laser Technol.
,
152
(
1
), p.
108160
.
8.
Mertens
,
R.
,
Dadbakhsh
,
S.
,
Van Humbeeck
,
J.
, and
Kruth
,
J. P.
,
2018
, “
Application of Base Plate Preheating During Selective Laser Melting
,”
Proc. CIRP
,
74
(
1
), pp.
5
11
.
9.
Wang
,
R.
,
Cheung
,
C. F.
,
Wang
,
C.
, and
Cheng
,
M. N.
,
2022
, “
Deep Learning Characterization of Surface Defects in the Selective Laser Melting Process
,”
Comput. Ind.
,
140
(
1
), p.
103662
.
10.
Bang
,
G. B.
,
Park
,
J. H.
,
Kim
,
W. R.
,
Hyun
,
S.-K.
,
Park
,
H.-K.
,
Lee
,
T. W.
, and
Kim
,
H. G.
,
2022
, “
Study on the Effect of Preheating Temperature of SLM Process on Characteristics of CoCrMo Alloy
,”
Mater. Sci. Eng. A
,
841
(
1
), p.
143020
.
11.
Al-Rubaie
,
K. S.
,
Melotti
,
S.
,
Rabelo
,
A.
,
Paiva
,
J. M.
,
Elbestawi
,
M. A.
, and
Veldhuis
,
S. C.
,
2020
, “
Machinability of SLM-Produced Ti6Al4V Titanium Alloy Parts
,”
J. Manuf. Processes
,
57
(
1
), pp.
768
786
.
12.
Yang
,
X.
,
Ma
,
W.
,
Zhang
,
Z.
,
Liu
,
S.
, and
Tang
,
H.
,
2022
, “
Ultra-High Specific Strength Ti6Al4V Alloy Lattice Material Manufactured Via Selective Laser Melting
,”
Mater. Sci. Eng. A
,
840
(
1
), p.
142956
.
13.
Silva
,
T.
,
Silva
,
F.
,
Xavier
,
J.
,
Gregório
,
A.
,
Reis
,
A.
,
Rosa
,
P.
,
Konopík
,
P.
,
Rund
,
M.
, and
Jesus
,
A.
,
2021
, “
Mechanical Behavior of Maraging Steel Produced by SLM
,”
Proc. Struct. Integrity
,
34
(
1
), pp.
45
50
.
14.
Rahulan
,
N.
,
Sharma
,
S. S.
,
Rakesh
,
N.
, and
Sambhu
,
R.
,
2022
, “
A Short Review on Mechanical Properties of SLM Titanium Alloys Based on Recent Research Works
,”
Mater. Today: Proc.
,
56
(
1
), pp.
A7
A12
.
15.
Guo
,
L.
,
Zhang
,
L.
,
Andersson
,
J.
, and
Ojo
,
O.
,
2022
, “
Additive Manufacturing of 18% Nickel Maraging Steels: Defect, Structure and Mechanical Properties: A Review
,”
J. Mater. Sci. Technol.
,
120
(
1
), pp.
227
252
.
16.
Wuriti
,
G.
,
Chattopadhyaya
,
S.
, and
Thomas
,
T.
,
2022
, “
Acoustic Emission Test Method for Investigation of M250 Maraging Steel Pressure Vessels for Aerospace Applications
,”
Mater. Today: Proc.
,
49
(
1
), pp.
2176
2182
.
17.
Yan
,
X.
,
Huang
,
C.
,
Chen
,
C.
,
Bolot
,
R.
,
Dembinski
,
L.
,
Huang
,
R.
,
Ma
,
W.
,
Liao
,
H.
, and
Liu
,
M.
,
2019
, “
Additive Manufacturing of WC Reinforced Maraging Steel 300 Composites by Cold Spraying and Selective Laser Melting
,”
Surf. Coat. Technol.
,
371
(
1
), pp.
161
171
.
18.
Vishwakarma
,
J.
,
Chattopadhyay
,
K.
, and
Santhi Srinivas
,
N. C.
,
2020
, “
Effect of Build Orientation on Microstructure and Tensile Behavior of Selectively Laser Melted M300 Maraging Steel
,”
Mater. Sci. Eng. A
,
798
(
1
), p.
140130
.
19.
Yang
,
Y.
,
Zhu
,
Y.
, and
Yang
,
H.
,
2020
, “
Enhancing Wear Resistance of Selective Laser Melted Parts: Influence of Energy Density
,”
ASME J. Tribol.
,
142
(
11
), p.
111701
.
20.
Li
,
H.
,
Ramezani
,
M.
,
Li
,
M.
,
Ma
,
C.
, and
Wang
,
J.
,
2018
, “
Tribological Performance of Selective Laser Melted 316L Stainless Steel
,”
Tribol. Int.
,
128
(
1
), pp.
121
129
.
21.
Bai
,
Y.
,
Wang
,
D.
,
Yang
,
Y.
, and
Wang
,
H.
,
2019
, “
Effect of Heat Treatment on the Microstructure and Mechanical Properties of Maraging Steel by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
760
(
1
), pp.
105
117
.
22.
Yin
,
S.
,
Chen
,
C.
,
Yan
,
X.
,
Feng
,
X.
,
Jenkins
,
R.
,
O’Reilly
,
P.
,
Liu
,
M.
,
Li
,
H.
, and
Lupoi
,
R.
,
2018
, “
The Influence of Aging Temperature and Aging Time on the Mechanical and Tribological Properties of Selective Laser Melted Maraging 18Ni-300 Steel
,”
Addit. Manuf.
,
22
(
1
), pp.
592
600
.
23.
Wei
,
S.
,
Kumar
,
P.
,
Lau
,
K. B.
,
Wuu
,
D.
,
Liew
,
L. L.
,
Wei
,
F.
,
Teo
,
S. L.
, et al
,
2022
, “
Effect of Heat Treatment on the Microstructure and Mechanical Properties of 2.4 GPa Grade Maraging Steel Fabricated by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
59
(
1
), p.
103190
.
24.
Yao
,
Y.
,
Wang
,
K.
,
Wang
,
X.
,
Li
,
L.
,
Cai
,
W.
,
Kelly
,
S.
,
Esparragoza
,
N.
,
Rosser
,
M.
, and
Yan
,
F.
,
2020
, “
Microstructural Heterogeneity and Mechanical Anisotropy of 18Ni-330 Maraging Steel Fabricated by Selective Laser Melting: The Effect of Build Orientation and Height
,”
J. Mater. Res.
,
35
(
15
), pp.
2065
2076
.
25.
Gao
,
P.
,
Jing
,
G.
,
Lan
,
X.
,
Li
,
S.
,
Zhou
,
Y.
,
Wang
,
Y.
,
Yang
,
H.
,
Wei
,
K.
, and
Wang
,
Z.
,
2021
, “
Effect of Heat Treatment on Microstructure and Mechanical Properties of Fe–Cr–Ni–Co–Mo Maraging Stainless Steel Produced by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
814
(
1
), p.
141149
.
26.
Ferreira
,
D. F. S.
,
Vieira
,
J. S.
,
Rodrigues
,
S. P.
,
Miranda
,
G.
,
Oliveira
,
F. J.
, and
Oliveira
,
J. M.
,
2022
, “
Dry Sliding Wear and Mechanical Behavior of Selective Laser Melting Processed 18Ni300 and H13 Steels for Moulds
,”
Wear
,
488–489
(
1
), p.
204179
.
27.
Ullah
,
R.
,
Akmal
,
J. S.
,
Laakso
,
S.
, and
Niemi
,
E.
,
2020
, “
Anisotropy of Additively Manufactured 18Ni-300 Maraging Steel: Threads and Surface Characteristics
,”
Proc. CIRP
,
93
(
1
), pp.
68
78
.
28.
Singh
,
N.
, and
Sinha
,
S. K.
,
2020
, “
Tribological Studies of Epoxy Composites With UHMWPE and MoS2 Fillers Coated on Bearing Steel: Dry Interface and Grease Lubrication
,”
ASME J. Tribol.
,
142
(
5
), p.
051902
.
29.
Chhabra
,
P.
, and
Kaur
,
M.
,
2020
, “
Elevated-Temperature Wear Study of HVOF Spray Cr3C2-NiCr-Coated Die Steels
,”
ASME J. Tribol.
,
142
(
6
), p.
061401
.
30.
Aldajah
,
S. H.
,
Ajayi
,
O. O.
,
Fenske
,
G. R.
, and
Xu
,
Z.
,
2005
, “
Effect of Laser Surface Modifications Tribological Performance of 1080 Carbon Steel
,”
ASME J. Tribol.
,
127
(
3
), pp.
596
604
.
31.
Huang
,
X.
,
Ding
,
S.
, and
Yue
,
W.
,
2021
, “
Effect of Cryogenic Treatment on Tribological Behavior of Ti6Al4V Alloy Fabricated by Selective Laser Melting
,”
J. Mater. Res. Technol.
,
12
(
1
), pp.
1979
1987
.
32.
Zhang
,
H.
,
Ji
,
X.
,
Ma
,
D.
,
Tong
,
M.
,
Wang
,
T.
,
Xu
,
B.
,
Sun
,
M.
, and
Li
,
D.
,
2021
, “
Effect of Aging Temperature on the Austenite Reversion and Mechanical Properties of a Fe–10Cr–10Ni Cryogenic Maraging Steel
,”
J. Mater. Res. Technol.
,
11
(
1
), pp.
98
111
.
33.
Joshy
,
J.
, and
Kuriachen
,
B.
,
2023
, “
Effect of Heat Treatment and Cryo-Treatment on Dry Tribological Behavior of Inconel 718 Fabricated Using Laser Powder Bed Fusion
,”
Wear
,
523
(
1
), p.
204819
.
34.
Joshy
,
J.
, and
Kuriachen
,
B.
,
2023
, “
Influence of Heat-Treatment and Cryo-Treatment on High Temperature Wear Performance of LPBF Inconel 718
,”
Wear
,
522
(
1
), p.
204681
.
35.
Tan
,
C.
,
Ma
,
W.
,
Deng
,
C.
,
Zhang
,
D.
, and
Zhou
,
K.
,
2023
, “
Additive Manufacturing SiC-Reinforced Maraging Steel: Parameter Optimisation, Microstructure and Properties
,”
Adv. Powder Mater.
,
2
(
1
), p.
100076
.
36.
Schmitz
,
T. L.
,
Action
,
J. E.
,
Burris
,
D. L.
,
Ziegert
,
J. C.
, and
Sawyer
,
W. G.
,
2004
, “
Wear-Rate Uncertainty Analysis
,”
ASME J. Tribol.
,
126
(
4
), pp.
802
808
.
37.
Gahlin
,
R.
,
Jacobson
,
S.
, and
Jacobson
,
J.
,
1998
,
A Novel Method to Map and Quantify Wear on a Micro-Scale
,
222
(
2
), pp.
93
102
.
38.
Mahmood
,
S.
,
Guo
,
E.
,
Stirling
,
A.
, and
Schulze
,
K. D.
,
2023
, “
Orientation Controls Tribological Performance of 3D-Printed PLA and ABS
,”
Tribol. Online
,
18
(
6
), pp.
302
312
.
39.
Hollar
,
K. A.
,
Ferguson
,
D. S.
,
Everingham
,
J. B.
,
Helms
,
J. L.
,
Warburton
,
K. J.
, and
Lujan
,
T. J.
,
2018
, “
Quantifying Wear Depth in Hip Prostheses Using a 3D Optical Scanner
,”
Wear
,
394–395
(
1
), pp.
195
202
.
40.
Ghaednia
,
H.
,
Wang
,
X.
,
Saha
,
S.
,
Xu
,
Y.
,
Sharma
,
A.
, and
Jackson
,
R. L.
,
2017
, “
A Review of Elastic–Plastic Contact Mechanics
,”
ASME Appl. Mech. Rev.
,
69
(
6
), p.
060804
.
41.
Saha
,
S.
, and
Jackson
,
R. L.
,
2020
, “
Elastic and Elastic-Perfectly Plastic Analysis of an Axisymmetric Sinusoidal Surface Asperity Contact
,”
Tribol. Mater. Surf. Interfaces
,
14
(
1
), pp.
1
21
.
42.
Chou
,
C.-Y.
,
Pettersson
,
N. H.
,
Durga
,
A.
,
Zhang
,
F.
,
Oikonomou
,
C.
,
Borgenstam
,
A.
,
Odqvist
,
J.
, and
Lindwall
,
G.
,
2021
, “
Influence of Solidification Structure on Austenite to Martensite Transformation in Additively Manufactured Hot-Work Tool Steels
,”
Acta Mater.
,
215
(
1
), p.
117044
.
43.
Atzeni
,
E.
,
Barletta
,
M.
,
Calignano
,
F.
,
Iuliano
,
L.
,
Rubino
,
G.
, and
Tagliaferri
,
V.
,
2016
, “
Abrasive Fluidized Bed (AFB) Finishing of AlSi10Mg Substrates Manufactured by Direct Metal Laser Sintering (DMLS)
,”
Addit. Manuf.
,
10
(
1
), pp.
15
23
.
44.
Wang
,
C.
,
Lin
,
X.
,
Wang
,
L.
,
Zhang
,
S.
, and
Huang
,
W.
,
2021
, “
Cryogenic Mechanical Properties of 316L Stainless Steel Fabricated by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
815
(
1
), p.
141317
.
You do not currently have access to this content.