Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In the present work, coating materials that can be welded to the EN 1.6220 low-alloy steel disc of a butterfly valve and are also compatible with the seal material, i.e., 17–4 PH steel, are studied. 312 duplex stainless steel, 316 austenitic stainless steel, and Stellite 6 are identified as potential coating materials for the disc based on Cobweb analysis and are welded to the disc using metal active gas (MAG) welding (312 and 316 steel coatings) and powder plasma arc welding (Stellite 6 coating). Microstructural analyses and Vickers hardness measurements of the weld joints are performed. The surface roughness and wear behavior of the coatings are also studied. Nanoscale wear phenomena and consequent phase transformations are studied using molecular dynamics simulations. The results show that 312 and 316 stainless steels are suitable coating materials for the disc.

References

1.
Smith
,
P.
, and
Zappe
,
R. W.
,
2004
,
Valve Selection Handbook
, 5th ed.,
Elsevier Inc.
,
Burlington, VT
.
2.
Lähdeniemi
,
J.
,
2023
, “
Coating of Disc Sealing Surface of Butterfly Valve
,” M.Sc. thesis,
LUT University
,
Lappeenranta, Finland
.
3.
Kah
,
P.
,
Shrestha
,
M.
, and
Martikainen
,
J.
,
2014
, “
Trends in Joining Dissimilar Metals by Welding
,”
Appl. Mech. Mater.
,
440
, pp.
269
276
.
4.
Sun
,
Z.
, and
Karppi
,
R.
,
1996
, “
The Application of Electron Beam Welding for the Joining of Dissimilar Metals: An Overview
,”
J. Mater. Proc. Technol.
,
59
(
3
), pp.
257
267
.
5.
Fang
,
Y.
,
Jiang
,
X.
,
Mo
,
D.
,
Zhu
,
D.
, and
Luo
,
Z.
,
2019
, “
A Review on Dissimilar Metals’ Welding Methods and Mechanisms With Interlayer
,”
Int. J. Adv. Manuf. Technol.
,
102
, pp.
2845
2863
.
6.
Stachowiak
,
G.
, and
Batchelor
,
A. W.
,
2014
,
Engineering Tribology
, 4th ed.,
Butterworth-Heinemann
,
Oxford, UK
.
7.
Popov
,
V.
,
2010
,
Contact Mechanics and Friction-Physical Principles and Applications
,
Springer
,
Germany
.
8.
Geoffroy
,
S.
, and
Prat
,
M.
,
2004
, “
On the Leak Through a Spiral-Groove Metallic Static Ring Gasket
,”
ASME J. Fluids Eng.
,
126
(
1
), pp.
48
54
.
9.
Nurhadiyanto
,
D.
,
2014
, “
Influence of Surface Roughness on Leakage of the Corrugated Metal Gasket
,” Ph.D. dissertation,
Yamaguchi University
,
Japan
.
10.
Allen
,
M. P.
,
2004
, “Introduction to Molecular Dynamics Simulation,”
Computational Soft Matter: From Synthetic Polymers to Proteins
.
N.
Attig
,
K.
Binder
,
H.
Grubmuller
, and
K.
Kremer
, eds.,
NIC Series
,
23
(1),
Bonn, Germany
, pp.
1
28
.
11.
Chen
,
J.
,
Huo
,
D.
, and
Yeddu
,
H. K.
,
2021
, “
Molecular Dynamics Study of Phase Transformations in NiTi Shape Memory Alloy Embedded With Precipitates
,”
Mater. Res. Expr.
,
8
, p.
106508
.
12.
Chen
,
J.
, and
Yeddu
,
H. K.
,
2023
, “
Study of Ageing and Size Effects in Nickel–Titanium Shape Memory Alloy Using Molecular Dynamics Simulations
,”
Phase Transit.
,
96
(
8
), pp.
596
606
.
13.
Chen
,
J.
,
Nokelainen
,
J.
,
Barbiellini
,
B.
, and
Yeddu
,
H. K.
,
2023
, “
Nanoscale Phenomena During Wetting of Copper on Nickel-Based Superalloy: A Molecular Dynamics Study
,”
Comp. Mater. Sci.
,
230
, p.
112453
.
14.
Li
,
J.
,
Dong
,
L.
,
Dong
,
X.
,
Zhao
,
W.
,
Liu
,
J.
,
Xiong
,
J.
, and
Xu
,
C.
,
2021
, “
Study on Wear Behavior of FeNiCrCoCu High Entropy Alloy Coating on Cu Substrate Based on Molecular Dynamics
,”
Appl. Surf. Sci.
,
570
, p.
151236
.
15.
Yang
,
S.
,
Zhang
,
L.
, and
Wu
,
Z.
,
2021
, “
An Investigation on the Nano-Abrasion Wear Mechanisms of KDP Crystals
,”
Wear
,
476
, p.
203692
.
16.
Seraj
,
R.
,
Abdollah-Zadeh
,
A.
,
Dosta
,
S.
,
Assadi
,
H.
, and
Garcia Cano
,
I.
,
2019
, “
Comparison of Stellite Coatings on Low Carbon Steel Produced by CGS and HVOF Spraying
,”
Surf. Coat. Technol.
,
372
, pp.
299
311
.
17.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comp. Phys.
,
117
(
1
), pp.
1
19
.
18.
Thompson
,
A. P.
,
Aktulga
,
H. M.
,
Berger
,
R.
,
Bolintineanu
,
D. S.
,
Brown
,
W. M.
,
Crozier
,
P. S.
,
in’t Veld
,
P. J.
, et al.,
2022
, “
LAMMPS-a Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales
,”
Comp. Phys. Commun.
,
271
, p.
108171
.
19.
Xie
,
L.
,
Brault
,
P.
,
Thomann
,
A. L.
, and
Bauchire
,
J. M.
,
2013
, “
AlCoCrCuFeNi High Entropy Alloy Cluster Growth and Annealing on Silicon: A Classical Molecular Dynamics Simulation Study
,”
Appl. Surf. Sci.
,
285
(
Part B
), pp.
810
816
.
20.
Sun
,
Z. H.
,
Zhang
,
J.
,
Xin
,
G. X.
,
Xie
,
L.
,
Yang
,
L. C.
, and
Peng
,
Q.
,
2022
, “
Tensile Mechanical Properties of CoCrFeNiTiAl High Entropy Alloy Via Molecular Dynamics Simulations
,”
Intermetallics
,
142
, p.
107444
.
21.
Liyanage
,
L. S. I.
,
Kim
,
S.-G.
,
Houze
,
J.
,
Kim
,
S.
,
Tschopp
,
M. A.
,
Baskes
,
M. I.
, and
Horstemeyer
,
M. F.
,
2014
, “
Structural, Elastic, and Thermal Properties of Cementite (Fe3C) Calculated Using a Modified Embedded Atom Method
,”
Phys. Rev. B
,
89
(
9
), p.
094102
.
22.
Choi
,
W.-M.
,
Jo
,
Y. H.
,
Sohn
,
S. S.
,
Lee
,
S.
, and
Lee
,
B.-J.
,
2018
, “
Understanding the Physical Metallurgy of the CoCrFeMnNi High-Entropy Alloy: An Atomistic Simulation Study
,”
npj Comput. Mater.
,
4
(
1
), pp.
1
9
.
23.
Li
,
X.-G.
,
Hu
,
C.
,
Chen
,
C.
,
Deng
,
Z.
,
Luo
,
J.
, and
Ong
,
S. P.
,
2018
, “
Quantum-Accurate Spectral Neighbor Analysis Potential Models for Ni-Mo Binary Alloys and FCC Metals
,”
Phys. Rev. B
,
98
(
9
), p.
094104
.
24.
Aslam
,
I.
,
Baskes
,
M. I.
,
Dickel
,
D. E.
,
Adibi
,
S.
,
Li
,
B.
,
Rhee
,
H.
,
Asle Zaeem
,
M.
, and
Horstemeyer
,
M. F.
,
2019
, “
Thermodynamic and Kinetic Behavior of Low-Alloy Steels: An Atomic Level Study Using an Fe-Mn-Si-C Modified Embedded Atom Method (MEAM) Potential
,”
Materialia
,
8
, p.
100473
.
25.
Lee
,
B. J.
, and
Baskes
,
M. I.
,
2000
, “
Second Nearest-Neighbor Modified Embedded-Atom-Method Potential
,”
Phys. Rev. B
,
62
(
13
), p.
8564
.
26.
Delhommelle
,
J.
, and
Millié
,
P.
,
2001
, “
Inadequacy of the Lorentz-Berthelot Combining Rules for Accurate Predictions of Equilibrium Properties by Molecular Simulation
,”
Molecul. Phys.
,
99
(
8
), pp.
619
625
.
27.
IMOA
,
2014
, “Practical Guidelines for the Fabrication of Duplex Stainless Steels,” International Molybdenum Association (IMOA), 3rd ed.
28.
Ibrahim
,
R.
,
Khedr
,
M.
,
Mahdmoud
,
T. S.
,
Abdel-Aleem
,
H. A.
, and
Hamad
,
A.
,
2021
, “
Study on the Mechanical Performance of Dissimilar Butt Joints Between Low Ni Medium-Mn and Ni-Cr Austenitic Stainless Steels Processed by Gas Tungsten Arc Welding
,”
Metals
,
11
(
9
), p.
14392021
.
29.
Guzey
,
B. N.
, and
Gurkan
,
I.
,
2023
, “
Investigation of Mechanical and Microstructural Properties in Joining Dissimilar P355GH and Stainless 316L Steels by TIG Welding Process
,”
Int. J. Press. Vessel. Pip.
,
205
, p.
104965
.
30.
Li
,
Z.
,
Cui
,
Y.
,
Wang
,
J.
,
Liu
,
C.
,
Wang
,
J.
,
Xu
,
T.
,
Lu
,
T.
,
Zhang
,
H.
,
Lu
,
J.
, and
Ma
,
S.
,
2019
, “
Characterization of Microstructure and Mechanical Properties of Stellite 6 Part Fabricated by Wire Arc Additive Manufacturing
,”
Metals
,
9
(
4
), p.
474
.
31.
Persson
,
B. N. J.
,
Albohr
,
O.
,
Tartaglino
,
U.
,
Volokitin
,
A. I.
, and
Tosatti
,
E.
,
2005
, “
On the Nature of Surface Roughness With Application to Contact Mechanics, Sealing, Rubber Friction and Adhesion
,”
J. Phys.: Condens. Matter
,
17
(
R1
), pp.
1
62
.
32.
Yeddu
,
H. K.
,
Lookman
,
T.
,
Borgenstam
,
A.
,
Ågren
,
J.
, and
Saxena
,
A.
,
2014
, “
Martensite Formation in Stainless Steels Under Transient Loading
,”
Mater. Sci. Eng. A
,
594
, pp.
48
51
.
33.
O’Brien
,
E. C. H. C.
, and
Yeddu
,
H. K.
,
2020
, “
Multi-length Scale Modeling of Carburization, Martensitic Microstructure Evolution and Fatigue Properties of Steel Gears
,”
J. Mater. Sci. Technol.
,
49
, pp.
157
165
.
34.
Zhang
,
S. Y.
,
Compagnon
,
E.
,
Godin
,
B.
, and
Korsunsky
,
A. M.
,
2015
, “
Investigation of Martensite Transformation in 316L Stainless Steel
,”
Mater. Today Proc.
,
2
(
Supplement 2
), pp.
S251
S260
.
35.
Paredes
,
M.
,
Grolleau
,
V.
, and
Wierzbicki
,
T.
,
2020
, “
On Ductile Fracture of 316L Stainless Steels at Room and Cryogenic Temperature Level: An Engineering Approach to Determine Material Parameters
,”
Materialia
,
10
, p.
100624
.
36.
Kuzucu
,
V.
,
Ceylan
,
M.
,
Celik
,
H.
, and
Aksoy
,
I.
,
1997
, “
Microstructure and Phase Analyses of Stellite 6 Plus 6 wt.% Mo Alloy
,”
J. Mater. Proc. Technol.
,
69
(
13
), pp.
257
263
.
37.
Ratia
,
V. L.
,
Zhang
,
D.
,
Carrington
,
M. J.
,
Daure
,
J. L.
,
McCartney
,
D. G.
,
Shipway
,
P. H.
, and
Stewart
,
D. A.
,
2019
, “
The Effect of Temperature on Sliding Wear of Self-Mated HIPed Stellite 6 in a Simulated PWR Water Environment
,”
Wear
,
420-421
, pp.
215
225
.
38.
Szala
,
M.
,
Chocyk
,
D.
,
Skic
,
A.
,
Kamiński
,
M.
,
Macek
,
W.
, and
Turek
,
M.
,
2021
, “
Effect of Nitrogen Ion Implantation on the Cavitation Erosion Resistance and Cobalt-Based Solid Solution Phase Transformations of HIPed Stellite 6
,”
Materials
,
14
(
9
), p.
2324
.
39.
Smith
,
R. T.
,
Lolla
,
T.
,
Gandy
,
D.
,
Wu
,
L.
,
Faria
,
G.
,
Ramirez
,
A. J.
,
Babu
,
S. S.
, and
Anderson
,
P. M.
,
2015
, “
In Situ X-ray Diffraction Analysis of Strain-Induced Transformations in Fe-and Co-Base Hardfacing Alloys
,”
Scripta Mater.
,
98
, pp.
60
63
.
You do not currently have access to this content.