Abstract

Mechanical system often involves the finite line contact of key components such as rolling element bearings and gear pairs. Different contact models have been developed to predict the load–displacement relationship and contact pressure distribution, but there usually exists a tradeoff between the accuracy of simulation results and computational cost. An improved slicing technique is presented in this work. According to the half-space theory, a tri-linear fitting model is developed to express the load–displacement relationship and coupling behavior in slices of contact region, which is originally controlled by a spatial convolution. The improved slicing technique is thus formulated based on the tri-linear model. A modified Newton–Raphson algorithm is adopted to solve the free boundary problem of the improved slicing technique. The improved slicing technique is validated to be able to correctly predict the load–displacement relationships and the contact pressure distributions of different contact profiles, especially for contact pressure concentrations which other slicing techniques are unable to predict accurately. The computation speed of the proposed method is much faster than the semi-analytical method and is of the same order of other slicing technique. The high accuracy and low computational cost enable the proposed method to be applied in the on-line calculation of rolling element bearings and other sophisticated mechanical systems.

References

1.
Hartnett
,
M. J.
,
1979
, “
The Analysis of Contact Stresses in Rolling Element Bearings
,”
ASME J. Lubr. Technol.
,
101
(
1
), pp.
105
109
.
2.
Fujiwara
,
H.
,
Kobayashi
,
T.
,
Kawase
,
T.
, and
Yamauchi
,
K.
,
2010
, “
Optimized Logarithmic Roller Crowning Design of Cylindrical Roller Bearings and Its Experimental Demonstration
,”
Tribol. Trans.
,
53
(
6
), pp.
909
916
.
3.
Tong
,
V.-C.
, and
Hong
,
S.-W.
,
2017
, “
Optimization of Partially Crowned Roller Profiles for Tapered Roller Bearings
,”
J. Mech. Sci. Technol.
,
31
(
2
), pp.
641
650
.
4.
Yang
,
L. H.
,
Xu
,
T. F.
,
Xu
,
H. L.
, and
Wu
,
Y.
,
2018
, “
Mechanical Behavior of Double-Row Tapered Roller Bearing Under Combined External Loads and Angular Misalignment
,”
Int. J. Mech. Sci.
,
142
, pp.
561
574
.
5.
Zheng
,
J.
,
Ji
,
J.
,
Yin
,
S.
, and
Tong
,
V.-C.
,
2020
, “
Internal Loads and Contact Pressure Distributions on the Main Shaft Bearing in a Modern Gearless Wind Turbine
,”
Tribol. Int.
,
141
, p.
105960
.
6.
Ye
,
Z.
,
Wang
,
L.
,
Gu
,
L.
, and
Zhang
,
C.
,
2013
, “
Effects of Tilted Misalignment on Loading Characteristics of Cylindrical Roller Bearings
,”
Mech. Mach. Theory
,
69
, pp.
153
167
.
7.
Boussinesq
,
J.
,
1885
,
Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques
,
Gauthier-Villars
,
Paris
.
8.
De Mul
,
J. M.
,
Kalker
,
J. J.
, and
Fredriksson
,
B.
,
1986
, “
The Contact Between Arbitrarily Curved Bodies of Finite Dimensions
,”
ASME J. Tribol.
,
108
(
1
), pp.
140
148
.
9.
Kalker
,
J. J.
, and
Van Randen
,
Y.
,
1972
, “
A Minimum Principle for Frictionless Elastic Contact With Application to Non-Hertzian Half-Space Contact Problems
,”
J. Eng. Math.
,
6
(
2
), pp.
193
206
.
10.
Tong
,
V.-C.
, and
Hong
,
S.-W.
,
2015
, “
Characteristics of Tapered Roller Bearings in Relation to Roller Profiles
,”
J. Mech. Sci. Technol.
,
29
(
7
), pp.
2913
2919
.
11.
Kabus
,
S.
,
Hansen
,
M. R.
, and
Mouritsen
,
O. O.
,
2012
, “
A New Quasi-static Cylindrical Roller Bearing Model to Accurately Consider Non-Hertzian Contact Pressure in Time Domain Simulations
,”
ASME J. Tribol.
,
134
(
4
), p.
041401
.
12.
Roda-Casanova
,
V.
, and
Sanchez-Marin
,
F.
,
2018
, “
An Adaptive Mesh Refinement Approach for Solving Non-Hertzian Elastic Contact Problems
,”
Meccanica
,
53
(
8
), pp.
2013
2028
.
13.
Najjari
,
M.
, and
Guilbault
,
R.
,
2014
, “
Modeling the Edge Contact Effect of Finite Contact Lines on Subsurface Stresses
,”
Tribol. Int.
,
77
, pp.
78
85
.
14.
Wang
,
Z.
,
Chen
,
X.
, and
Shen
,
X.
,
2020
, “
Application of Equivalent Load Method in Finite-Length Elastic Space With the Consideration of Two Free-End Surfaces
,”
Tribol. Int.
,
147
, p.
105550
.
15.
Hamrock
,
B.
, and
Dowson
,
D.
,
1975
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part 1: Theoretical Formulation
,”
ASME J. Lubr. Technol.
,
98
(
2
), pp.
223
228
.
16.
Guo
,
L.
,
Wang
,
W.
,
Zhang
,
Z. M.
, and
Wong
,
P. L.
,
2017
, “
Study on the Free Edge Effect on Finite Line Contact Elastohydrodynamic Lubrication
,”
Tribol. Int.
,
116
, pp.
482
490
.
17.
Lim
,
T. C.
, and
Singh
,
R.
,
1990
, “
Vibration Transmission Through Rolling Element Bearings, Part 1: Bearing Stiffness Formulation
,”
J. Sound Vib.
,
139
(
2
), pp.
179
199
.
18.
Teutsch
,
R.
, and
Sauer
,
B.
,
2004
, “
An Alternative Slicing Technique to Consider Pressure Concentrations in Non-Hertzian Line Contacts
,”
ASME J. Tribol.
,
126
(
3
), pp.
436
442
.
19.
Hong
,
S. W.
, and
Tong
,
V. C.
,
2016
, “
Rolling-Element Bearing Modeling: A Review
,”
Int. J. Precis. Eng. Manuf.
,
17
(
12
), pp.
1729
1749
.
20.
Skrinjar
,
L.
,
Slavic
,
J.
, and
Boltezar
,
M.
,
2018
, “
A Review of Continuous Contact-Force Models in Multibody Dynamics
,”
Int. J. Mech. Sci.
,
145
, pp.
171
187
.
21.
De Mul
,
J. M.
,
Vree
,
J. M.
, and
Maas
,
D. A.
,
1989
, “
Equilibrium and Associated Load Distribution in Ball and Roller Bearings Loaded in Five Degrees of Freedom While Neglecting Friction, Part 2: Application to Roller-Bearings and Experimental-Verification
,”
ASME J. Tribol.
,
111
(
1
), pp.
149
155
.
22.
Tong
,
V. C.
, and
Hong
,
S. W.
,
2017
, “
The Effect of Angular Misalignment on the Stiffness Characteristics of Tapered Roller Bearings
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
231
(
4
), pp.
712
727
.
23.
Shafiee
,
A.
,
Russell
,
T.
,
Sadeghi
,
F.
, and
Wilmer
,
M. G.
,
2022
, “
Analytical Investigation of Roller Skew and Tilt in a Spherical Roller Bearing
,”
ASME J. Tribol.
,
144
(
7
), p.
071201
.
24.
Palmgren
,
A.
,
1959
,
Ball and Roller Bearing Engineering
,
SKF Industries Inc.
,
Philadelphia
.
25.
ISO
,
2008
,
Rolling Bearings—Methods for Calculating the Modified Reference Rating Life for Universally Loaded Bearings (ISO/TS 16281:2008)
,
International Organization for Standardization
,
Geneva, Switzerland
.
26.
AGMA
,
2020
,
Standard for Design and Specifications of Gearboxes for Wind Turbines (AGMA 6006)
,
American Gear Manufacturers Association
,
Alexandria
.
27.
ISO
,
2012
,
Wind Turbines – Part 4: Design Requirements for Wind Turbine Gearboxes (IEC 61400-4:2012)
,
International Organization for Standardization
,
Geneva, Switzerland
.
28.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2012
, “
Film Thickness and Asperity Load Formulas for Line-Contact Elastohydrodynamic Lubrication With Provision for Surface Roughness
,”
ASME J. Tribol.
,
134
(
1
), p.
011503
.
29.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2015
, “
An Engineering Approach for Rapid Evaluation of Traction Coefficient and Wear in Mixed EHL
,”
Tribol. Int.
,
92
, pp.
184
190
.
30.
Wolf
,
M.
,
Sanner
,
A.
, and
Fatemi
,
A.
,
2020
, “
A Semi-analytical Approach for Rapid Detection of Roller-Flange Contacts in Roller Element Bearings
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
235
(
7
), pp.
1440
1449
.
31.
Stuhler
,
P.
,
Wolf
,
M.
,
Romeser
,
M.
,
Nagler
,
N.
, and
Fatemi
,
A.
,
2022
, “
Experimental and Numerical Investigations of Slip Behavior for Combined Loaded Full-Complement Cylindrical Roller Bearings
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
236
(
12
), pp.
2363
2374
.
32.
Singh
,
K. P.
, and
Paul
,
B.
,
1974
, “
Numerical Solution of Non-Hertzian Elastic Contact Problems
,”
ASME J. Appl. Mech.
,
41
(
2
), pp.
484
490
.
33.
Jiang
,
S. Y.
,
Wang
,
Y.
, and
Wang
,
Y. M.
,
2019
, “
Modeling of Static Stiffness for Linear Motion Roller Guide
,”
ASME J. Tribol.
,
141
(
11
), p.
111102
.
34.
Hertz
,
H.
,
1882
, “
Ueber die berührung fester elastischer körper
,”
J. für Reine Angew. Math. (Crelles J.)
,
92
, pp.
156
171
.
35.
Hou
,
Y.
, and
Wang
,
X.
,
2021
, “
Measurement of Load Distribution in a Cylindrical Roller Bearing With an Instrumented Housing: Finite Element Validation and Experimental Study
,”
Tribol. Int.
,
155
, p.
106785
.
36.
Lin
,
S.
, and
Jiang
,
S.
,
2019
, “
Study of the Stiffness Matrix of Preloaded Duplex Angular Contact Ball Bearings
,”
ASME J. Tribol.
,
141
(
3
), p.
032204
.
You do not currently have access to this content.