Abstract

Liquid methane is one of the most promising candidates for the next-generation rocket propellant because it has an excellent balance between several propulsion performances such as specific impulse, storability, and structural coefficient. JAXA has developed rocket engine technologies for liquid methane engines. In this paper, we investigate the heat generation characteristics of ball bearings used in liquid methane turbopumps. A usual approach to evaluating a cryogenic ball bearing performance is to conduct experimental testing which costs a lot. This research introduces numerical approaches based on physical mechanisms in rotating ball bearings to clarify the heat generation characteristics. The main factors of the heat generation are friction heat generation and fluid heat generation. The friction heat generation is caused by mechanical friction of bearing elements and calculated based on bearing motion analysis and Hertzian contact theory. The fluid heat generation is caused by the fluid drag force on bearing elements and calculated by computational fluid dynamics analysis. The theoretical model is compared with experimental results, showing an excellent agreement. It is clarified that the dominant factor of the bearing heat generation in liquid methane environment is the friction heat generation on races-balls contact at lower velocity condition while it tends to change to the fluid heat generation due to the bearing elements’ rotational motion at higher velocity condition. In addition, cryogenic bearing characteristics which are clarified by theoretical modeling are discussed.

References

1.
Taya
,
K.
,
Sakaguchi
,
H.
,
Ishikawa
,
Y.
,
Kimoto
,
K.
, and
Ishizaki
,
S.
,
2014
, “
Development Status of LOX/LCH4 Rocket Engine
,”
50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, Paper No. AIAA 2014-3480.
2.
Asakawa
,
H.
,
Nanri
,
H.
,
Aoki
,
K.
,
Kubota
,
I.
,
Mori
,
H.
,
Ishikawa
,
Y.
,
Kimoto
,
K.
,
Ishihara
,
S.
, and
Ishizaki
,
S.
,
2017
,
The Status of the Research and Development of LNG Rocket Engines in Japan
,
Springer Aerospace Technology
,
New York
.
3.
Morehart
,
J.
,
2021
, “
A Survey of LNG-Fueled Rocket Engine Development Activity—Non U.S.
,”
AIAA Propulsion and Energy 2021 Forum
, Paper No. AIAA 2021-3581.
4.
Simontacchi
,
P.
,
Blasi
,
R.
,
Edeline
,
E.
,
Sagnier
,
S.
,
Ravier
,
N.
,
Espinosa-Ramos
,
A.
,
Breteau
,
J.
, and
Altenhoefer
,
P.
,
2019
, “
Prometheus: Precursor of New Low-Cost Rocket Engine Family
,”
8th European Conference for Aeronautics and Space Sciences
,
Madrid, Spain
,
July 1–4
.
5.
Boué
,
Y.
,
Vinet
,
P.
,
Magniant
,
S.
,
Motomura
,
T.
,
Blasi
,
R.
, and
Dutheil
,
J.
,
2018
, “
LOX/Methane Reusable Rocket Propulsion at Reach With Large Scale Demonstrators Tested
,”
Acta Astronaut.
,
152
, pp.
542
556
.
6.
Neill
,
T.
,
Judd
,
D.
,
Veith
,
E.
, and
Rousar
,
D.
,
2006
, “
Practical Uses of Liquid Methane in Rocket Engine Applications
,”
57th International Astronautical Congress.
,
Valencia, Spain
,
Oct. 2–6
.
7.
Nosaka
,
M.
,
Oike
,
M.
,
Kamijo
,
K.
,
Kikuchi
,
M.
,
Katsuta
,
H.
, and
Jacobson
,
B.
,
1988
, “
Experimental Study on Lubricating Performance of Self-Lubricating Ball Bearings for Liquid Hydrogen Turbopumps
,”
Lubr. Eng.
,
44
(
1
), pp.
30
44
.
8.
Butner
,
M. F.
, and
Keller
,
R. B.
,
1971
, “
Liquid Rocket Engine Turbopump Bearings
,” Paper No. NASA-SP-8048.
9.
Dieter
,
H.
, and
David
,
H.
,
1967
, “
Design of Liquid Propellant Rocket Engines
,” 2nd ed., Paper No. NASA-SP-125.
10.
Scibbe
,
H. W.
,
1968
, “
Bearings and Seals for Cryogenic Fluids
,”
SAE Trans.
,
77
, pp.
2307
2320
.
11.
Subbaraman
,
M. R.
,
Keba
,
J. E.
, and
Hadid
,
A. H.
,
1992
, “Bearing Coolant Flow Optimization,”
Advanced Earth-to-Orbit Propulsion Technology
,
Vol. 2
, pp.
439
449
. Paper No. NASA CP 3174.
12.
Kawasaki
,
S.
,
Kimura
,
T.
,
Uchiumi
,
M.
, and
Suda
,
K.
,
2011
, “
Numerical Study on Pressure Loss Across the Ball Bearing in Rocket Turbopump Coolant Flow
,”
Turbomachinery
,
39
(
6
), pp.
358
365
.
13.
Addy
,
J. H.
, and
Schuller
,
F.
,
1993
, “
Lubrication of an 85-mm Ball Bearing With RP-1
,”
29th Joint Propulsion Conference and Exhibit
,
Monterey, CA
,
June 28–30
.
14.
Gibson
,
H. G.
,
1991
, “
An Evaluation of Bearings Operating in a Cryogenic Environment With Silicon Nitride Rolling Elements
,” Paper No. NASA TM-103524.
15.
Gibson
,
H.
,
Thom
,
R.
,
Moore
,
C.
, and
Haluch
,
D.
,
2010
, “
History of Space Shuttle Main Engine Turbopump Bearing Testing
,”
57th JANNAF Joint Propulsion Meeting.
,
Colorado Springs, CO
,
May 3–7
.
16.
Nosaka
,
M.
,
Oike
,
M.
,
Kikuchi
,
M.
, and
Mayumi
,
T.
,
1997
, “
Tribo-Characteristics of Cryogenic Hybrid Ceramic Ball Bearings for Rocket Turbopumps: Self-Lubricating Performance
,”
STLE Tribol. Trans.
,
40
(
1
), pp.
21
30
.
17.
Nosaka
,
M.
,
Takada
,
S.
,
Kikuchi
,
M.
,
Sudo
,
T.
, and
Yoshida
,
M.
,
2004
, “
Ultra High Speed Performance of Ball Bearings and Annular Seals in Liquid Hydrogen at Up to 3 Million DN 120 000 rpm
,”
STLE Tribol. Trans.
,
47
(
1
), pp.
43
53
.
18.
Dindar
,
A.
,
Chimanpure
,
A. S.
, and
Kahraman
,
A.
,
2022
, “
Mechanical Power Losses of Ball Bearings: Model and Experimental Validation
,”
ASME J. Tribol.
,
144
(
5
), p.
051603
.
19.
Gupta
,
P.
, and
Gibson
,
H.
,
2021
, “
Real-Time Dynamics Modeling of Cryogenic Ball Bearings With Thermal Coupling
,”
ASME J. Tribol.
,
143
(
3
), p.
031201
.
20.
Gupta
,
P.
,
1975
, “
Transient Ball Motion and Skid in Ball Bearings
,”
ASME J. Lubr. Technol.
,
97
(
2
), pp.
261
269
.
21.
Gupta
,
P.
,
Dill
,
J.
, and
Bandow
,
H.
,
1984
, “
Dynamics of Rolling Element—Bearings Experimental Validation of the DREB and RAPIDREB Computer Programs
,”
ASME J. Tribol.
,
107
(
1
), pp.
132
137
.
22.
Gupta
,
P.
,
1984
,
Advanced Dynamics of Rolling Elements
,
Springer-Verlag
,
Berlin Heidelberg, New York, Tokyo
.
23.
Kakudo
,
H.
,
Takada
,
S.
, and
Hirayama
,
T.
,
2021
, “
Heat Generation in Cryogenic Turbopump Bearing
,”
Tribol. Online
,
16
(
4
), pp.
271
278
.
24.
Etsion
,
I.
,
1984
, “
A New Concept of Zero-Leakage Noncontacting Mechanical Face Seal
,”
ASME J. Tribol.
,
106
(
3
), pp.
338
343
.
25.
Lipschitz
,
A.
,
1985
, “
A Zero-Leakage Film Riding Face Seal
,”
ASME J. Tribol.
,
107
(
3
), pp.
326
330
.
26.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2007
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP
,” Version 8.0, National Institute of Standards and Technology.
27.
Harris
,
T.
, and
Kotzalas
,
M.
,
2006
,
Advanced Concepts of Bearing Technology
,
CRC Press
,
Boca Raton, FL
.
28.
Jones
,
A. B.
,
1959
, “
Ball Motion and Sliding Friction in Ball Bearings
,”
ASME J. Basic Eng.
,
81
(
1
), pp.
1
12
.
29.
Jones
,
A. B.
,
1959
, “
A General Theory for Elastically Constrained Ball and Radial Roller Bearings Under Arbitrary Load and Speed Conditions
,”
ASME J. Basic Eng.
,
82
(
2
), pp.
309
320
.
30.
Schlichtig
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary Layer Theory
, 8th Revised and Enlarged ed.,
Springer
,
New York
.
31.
Nosaka
,
M.
,
Oike
,
M.
,
Kikuchi
,
M.
,
Kamijo
,
K.
, and
Tajiri
,
M.
,
1993
, “
Tribo-Characteristics of Self-Lubricating Ball Bearings for the LE-7 Liquid Hydrogen Rocket-Turbopump
,”
STLE Tribol. Trans.
,
36
(
3
), pp.
432
442
.
32.
Nosaka
,
M.
, and
Kato
,
T.
,
2013
,
Cryogenic Tribology in High-Speed Bearings and Shaft Seals of Rocket Turbopumps, Tribology—Fundamentals and Advancements
,
IntechOpen
,
Jürgen Gegner
.
You do not currently have access to this content.