Abstract

The hydrostatic journal bearing’s recess pressure is to be determined using a novel approach. This method treats the circumferential bearing lands on both sides of recesses as infinitely long bearings, and the axial bearing lands on both sides of recesses as infinitely short bearings. The Newton–Cotes integral formula is used to solve the definite integration. By this simplification, a new analytical expression of recess pressure considering the hydrodynamic effect on bearing land is obtained. The recess pressure versus eccentricity, supply oil pressure, recess wrap angle, and attitude angle solved by the new method is compared with that calculated by the finite difference method and Liang’s method from two kinds of four-recess hydrostatic journal bearing compensated by capillary restrictor. The results indicate that the new process has high accuracy and its precision is not almost affected by the parameters change. Moreover, the new method has low time consumption.

References

1.
Leonard
,
R.
, and
Rowe
,
W. B.
,
1973
, “
Dynamic Force Coefficients and the Mechanism of Instability in Hydrostatic Journal Bearings
,”
Wear
,
23
(
3
), pp.
277
282
.
2.
Jain
,
S. C.
,
Sinhasan
,
R.
, and
Sharma
,
S. C.
,
1992
, “
Analytical Study of a Flexible Hybrid Journal Bearing System Using Different Flow Control Devices
,”
Tribol. Int.
,
25
(
6
), pp.
387
395
.
3.
Odonoghue
,
J. P.
,
Rowe
,
W. B.
, and
Hooke
,
C. J.
,
1969
, “
Design of Hydrostatic Bearings Using an Operating Parameter
,”
Wear
,
14
(
5
), pp.
355
362
.
4.
Singh
,
N.
,
Sharma
,
S. C.
,
Jain
,
S. C.
, and
Reddy
,
S. S.
,
2004
, “
Performance of Membrane Compensated Multirecess Hydrostatic/Hybrid Flexible Journal Bearing System Considering Various Recess Shapes
,”
Tribol. Int.
,
37
(
1
), pp.
11
24
.
5.
Shaw
,
D.
, and
Hsieh
,
H. A.
,
2019
, “
Hydrostatic Journal Bearing With Porous Pads and Improved Properties
,”
ASME J. Tribol.
,
141
(
12
), p.
121701
.
6.
Tomar
,
A. K.
, and
Sharma
,
S. C.
,
2022
, “
Non-Newtonian Lubrication of Hybrid Multi-Recess Spherical Journal Bearings With Different Geometric Shapes of Recess
,”
Tribol. Int.
,
171
(
52
), p.
107579
.
7.
Lee
,
S. M.
,
Lee
,
D. W.
,
Ha
,
Y. H.
,
Lee
,
S. J.
,
Hwang
,
J. H.
, and
Choi
,
Y. H.
,
2013
, “
A Study on the Influence of Waviness Error to a Hydrostatic Bearing for a Crankshaft Pin Turner
,”
Tribol. Trans.
,
56
(
6
), pp.
1077
1086
.
8.
Lin
,
Q. Y.
,
Wei
,
Z. Y.
,
Wang
,
N.
, and
Chen
,
W.
,
2013
, “
Analysis on the Lubrication Performances of Journal Bearing System Using Computational Fluid Dynamics and Fluid-Structure Interaction Considering Thermal Influence and Cavitation
,”
Tribol. Int.
,
64
(
3
), pp.
8
15
.
9.
Cha
,
M.
, and
Glavatskih
,
S.
,
2015
, “
Nonlinear Dynamic Behaviour of Vertical and Horizontal Rotors in Compliant Liner Tilting pad Journal Bearings: Some Design Considerations
,”
Tribol. Int.
,
82
(
16
), pp.
142
152
.
10.
Teo
,
C. J.
,
Liu
,
L. X.
,
Li
,
H. Q.
,
Ho
,
L. C.
,
Jacobson
,
S. A.
,
Ehrich
,
F. F.
,
Epstein
,
A. H.
, and
Spakovszky
,
Z. S.
,
2009
, “
High-Speed Operation of a Gas-Bearing Supported MEMS-Air Turbine
,”
ASME J. Tribol.
,
131
(
3
), p.
032001
.
11.
Choy
,
F. K.
,
Braun
,
M. J.
, and
Hu
,
Y.
,
1992
, “
Analytical and Numerical Study of a Misaligned Cavitating Hydrodynamic Cryogenic Journal Bearing
,”
Tribol. Int.
,
25
(
1
), pp.
3
15
.
12.
Sanandres
,
L.
,
1994
, “
Dynamic Force Response of Spherical Hydrostatic Journal Bearings for Cryogenic Applications
,”
Tribol. Trans.
,
37
(
3
), pp.
463
470
.
13.
Martin
,
J. K.
,
2004
, “
Measured Stiffness and Displacement Coefficients of a Stationary Rotor Hydrostatic Bearing
,”
Tribol. Int.
,
37
(
10
), pp.
809
816
.
14.
Nicodemus
,
E. R.
, and
Sharma
,
S. C.
,
2010
, “
Influence of Wear on the Performance of Multirecess Hydrostatic Journal Bearing Operating With Micropolar Lubricant
,”
ASME J. Tribol.
,
132
(
2
), p.
021703
.
15.
Liu
,
Z.
,
Wang
,
Y.
,
Cai
,
L.
,
Zhao
,
Y.
,
Cheng
,
Q.
, and
Dong
,
X.
,
2017
, “
A Review of Hydrostatic Bearing System: Researches and Applications
,”
Adv. Mech. Eng.
,
9
(
10
), p.
168781401773053
.
16.
Kumar
,
S.
,
Kumar
,
V.
, and
Singh
,
A. K.
,
2020
, “
Influence of Lubricants on the Performance of Journal Bearings—a Review
,”
Tribol. - Mater. Surf. Interfaces
,
14
(
2
), pp.
67
78
.
17.
Ghosh
,
B.
,
1973
, “
Load and Flow Characteristics of a Capillary Compensated Hydrostatic Journal-Bearing
,”
Wear
,
23
(
3
), pp.
377
386
.
18.
Kumar
,
V.
, and
Sharma
,
S. C.
,
2017
, “
Combined Influence of Couple Stress Lubricant, Recess Geometry and Method of Compensation on the Performance of Hydrostatic Circular Thrust Pad Bearing
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
231
(
6
), pp.
716
733
.
19.
Sharma
,
S. C.
,
Sinhasan
,
R.
,
Jain
,
S. C.
,
Singh
,
N.
, and
Singh
,
S. K.
,
1998
, “
Performance of Hydrostatic/Hybrid Journal Bearings With Unconventional Recess Geometries
,”
Tribol. Trans.
,
41
(
3
), pp.
375
381
.
20.
Zhang
,
P. H.
,
Chen
,
Y. L.
, and
Liu
,
X. T.
,
2018
, “
Relationship Between Roundness Errors of Shaft and Radial Error Motions of Hydrostatic Journal Bearings Under Quasi-Static Condition
,”
Precis. Eng.
,
51
(
58
), pp.
564
576
.
21.
Sharma
,
S. C.
,
Phalle
,
V. M.
, and
Jain
,
S. C.
,
2011
, “
Performance Analysis of a Multirecess Capillary Compensated Conical Hydrostatic Journal Bearing
,”
Tribol. Int.
,
44
(
5
), pp.
617
626
.
22.
Liu
,
T.
,
Li
,
C.
,
Duan
,
R.
,
Qu
,
H.
,
Chen
,
F.
,
Zhou
,
Z.
,
Zhang
,
J.
, and
Shi
,
Z.
,
2022
, “
Viscous Oil Film Thermal Modeling of Hydrostatic Bearings With a Rectangular Microgroove Surface
,”
Front. Energy Res.
,
10
(
1
), p.
891380
.
23.
Du
,
J.
, and
Liang
,
G.
,
2019
, “
Performance Comparative Analysis of Hydrostatic Bearings Lubricated With Low-Viscosity Cryogenic Fluids
,”
Tribol. Int.
,
137
(
13
), pp.
139
151
.
24.
Santos
,
I. F.
, and
Watanabe
,
F. Y.
,
2004
, “
Compensation of Cross-Coupling Stiffness and Increase of Direct Damping in Multirecess Journal Bearings Using Active Hybrid Lubrication: Part I—Theory
,”
ASME J. Tribol.
,
126
(
1
), pp.
146
155
.
25.
Sharma
,
S. C.
,
Nicodemus
,
E. R.
, and
Ram
,
N.
,
2011
, “
A Study of Misaligned Micropolar Lubricated Membrane Compensated Hybrid Journal Bearing System
,”
ASME J. Tribol.
,
133
(
3
), p.
031703
.
26.
Tomar
,
A. K.
, and
Sharma
,
S. C.
,
2020
, “
Finite Element Analysis of Multirecess Hybrid Spherical Journal Bearing System
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
234
(
11
), pp.
1798
1821
.
27.
Liang
,
P.
,
Lu
,
C.
,
Pan
,
W.
, and
Li
,
S.
,
2014
, “
A New Method for Calculating the Static Performance of Hydrostatic Journal Bearing
,”
Tribol. Int.
,
77
(
10
), pp.
72
77
.
28.
Liang
,
P.
,
Lu
,
C.
,
Ding
,
J.
, and
Chen
,
S.
,
2013
, “
A Method for Measuring the Hydrodynamic Effect on the Bearing Land
,”
Tribol. Int.
,
67
(
20
), pp.
146
153
.
29.
Zhang
,
Y.
,
Yu
,
S.
,
Lu
,
C.
,
Zhao
,
H.
, and
Liang
,
P.
,
2020
, “
An Improved Lumped Parameter Method for Calculating Static Characteristics of Multi-Recess Hydrostatic Journal Bearings
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
234
(
2
), pp.
301
310
.
You do not currently have access to this content.