Abstract

The restricted adsorption capacity of ordinary graphene at high temperature limits its application in engine lubrication. To address this, nitrogen-doped element-modified graphene with strong adsorption and superior lubricating properties is prepared by a bottom-up chemical strategy in this study. The reciprocating tribometer is aimed at simulating the piston operating environment to determine the lubrication performance of nitrogen-doped graphene. The characterization and analysis of the wear marks are performed by means of depth-of-field microscope, scanning electron microscope, energy dispersive spectrometer, and other instruments. The experimental data demonstrate that the friction-reduction and anti-wear properties of PAO 6 base oil are enhanced by 22.4% and 56.9% (100 °C), respectively, after the addition of 0.4 wt% nitrogen-doped graphene. Besides, the abrasive and adhesive wear are significantly reduced, which are attributed to its inter-layer slip along the sliding direction and superior adsorption performance. Finally, the interfacial lubrication mechanism of lubricant protective film under high-temperature conditions is revealed.

References

1.
Upendra
,
M.
, and
Vasu
,
V.
,
2020
, “
Synergistic Effect Between Phosphonium-Based Ionic Liquid and Three Oxide Nanoparticles as Hybrid Lubricant Additives
,”
ASME J. Tribol.
,
142
(
5
), p.
052101
.
2.
Bhaumik
,
S.
,
Paleu
,
V.
,
Pathak
,
R.
,
Maggirwar
,
R.
,
Katiyar
,
J. K.
, and
Sharma
,
A. K.
,
2019
, “
Tribological Investigation of r-GO Additived Biodegradable Cashew Nut Shells Liquid as an Alternative Industry Lubricant
,”
Tribol. Int.
,
135
, pp.
500
509
.
3.
Meng
,
F. M.
,
Han
,
H. L.
,
Ma
,
Z. F.
, and
Tang
,
B. P.
,
2021
, “
Effects of Aviation Lubrication on Tribological Performances of Graphene/MoS2 Composite Coating
,”
ASME J. Tribol.
,
143
(
3
), p.
031401
.
4.
Kałużny
,
J.
,
Waligórski
,
M.
,
Szymański
,
G. M.
,
Merkisz
,
J.
,
Różański
,
J.
,
Nowicki
,
M.
,
Al Karawi
,
M.
, and
Kempa
,
K.
,
2020
, “
Reducing Friction and Engine Vibrations With Trace Amounts of Carbon Nanotubes in the Lubricating Oil
,”
Tribol. Int.
,
151
, p.
106484
.
5.
Ouyang
,
T. C.
,
Tang
,
W. T.
,
Pan
,
M. M.
,
Tang
,
J.
, and
Huang
,
H. Z.
,
2022
, “
Friction-Reducing and Anti-Wear Properties of 3D Hierarchical Porous Graphene/Multi-walled Carbon Nanotube in Castor Oil Under Severe Condition: Experimental Investigation and Mechanism Study
,”
Wear
,
498–499
, p.
204302
.
6.
Wang
,
W.
,
Zhao
,
W. H.
,
Ma
,
Q.
,
Kouediatouka
,
A. N.
,
Zhang
,
H.
,
Dong
,
G. N.
,
Hua
,
M.
, and
Tam
,
H. Y.
,
2023
, “
Synergistic Lubrication for Textured Surfaces Using Polar and Nonpolar Lubricants
,”
ASME J. Tribol.
,
145
(
1
), p.
012201
.
7.
Singh
,
J.
,
Kumar
,
D.
, and
Tandon
,
N.
,
2018
, “
Tribological and Vibration Studies on Newly Developed Nanocomposite Greases Under Boundary Lubrication Regime
,”
ASME J. Tribol.
,
140
(
3
), p.
032001
.
8.
Mobarak
,
H. M.
,
Mohamad
,
E. N.
, and
Masjuki
,
H. H.
,
2014
, “
The Prospects of bio-Lubricants as Alternatives in Automotive Applications
,”
Renewable Sustainable Energy Rev.
,
33
, pp.
34
43
.
9.
Ouyang
,
T. C.
,
Lei
,
W. W.
,
Tang
,
W. T.
,
Sheng
,
Y. D.
, and
Mo
,
C. L.
,
2021
, “
Experimental Investigation of the Effect of IF-WS2 as an Additive in Castor Oil on Tribological Property
,”
Wear
,
486–487
, p.
204070
.
10.
Upadhyay
,
R. K.
, and
Kumar
,
A.
,
2018
, “
A Novel Approach to Minimize Dry Sliding Friction and Wear Behavior of Epoxy by Infusing Fullerene C70 and Multiwalled Carbon Nanotubes
,”
Tribol. Int.
,
120
, pp.
455
464
.
11.
Qi
,
S.
,
Geng
,
Z.
, and
Lu
,
Z.
,
2020
, “
Synergistic Lubricating Behaviors of 3D Graphene and 2D Hexagonal Boron Nitride Dispersed in PAO 4 for Steel/Steel Contact
,”
Adv. Mater.
,
7
, p.
1901893
.
12.
Mushtaq
,
Z.
, and
Hanief
,
M.
,
2021
, “
Evaluation of Tribological Performance of Jatropha Oil Modified With Molybdenum Disulphide Micro-Particles for Steel–Steel Contacts
,”
ASME J. Tribol.
,
143
(
2
), p.
021401
.
13.
Srivyas
,
P. D.
, and
Charoo
,
M. S.
,
2020
, “
Friction and Wear Characterization of Spark Plasma Sintered Hybrid Aluminum Composite Under Different Sliding Conditions
,”
ASME J. Tribol.
,
142
(
12
), p.
121701
.
14.
Sarkar
,
S.
, and
Sarkar
,
R.
,
2021
, “
Synthesis, Characterization and Tribological Study of Zinc Oxide Nanoparticles
,”
Mater. Today
,
44
(
5
), pp.
3606
3612
.
15.
Song
,
W.
,
Yan
,
J.
, and
Ji
,
H.
,
2018
, “
Tribological Study of the SOCNTs@MoS2 Composite as a Lubricant Additive: Synergistic Effect
,”
Ind. Eng. Chem. Res.
,
57
(
20
), pp.
6878
6887
.
16.
Zhao
,
J.
,
Peng
,
Y. T.
,
Zhou
,
Q. G.
, and
Zou
,
K.
,
2021
, “
The Current-Carrying Tribological Properties of Cu/Graphene Composites
,”
ASME J. Tribol.
,
143
(
10
), p.
102101
.
17.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.
18.
Zhang
,
G.
,
Xu
,
Y.
,
Xiang
,
X.
, and
Zheng
,
G.
,
2018
, “
Tribological Performances of Highly Dispersed Graphene Oxide Derivatives in Vegetable Oil
,”
Tribol. Int.
,
126
, pp.
39
48
.
19.
Li
,
S.
,
Ma
,
Q.
,
Tong
,
Z.
,
Liu
,
Q.
, and
Dong
,
G. N.
,
2022
, “
Synergistic Lubricating Performance of h-BN/GF Nanoparticles as Oil Additives for Steel-Steel Contact
,”
ASME J. Tribol.
,
144
(
6
), p.
061902
.
20.
Bian
,
J. J.
, and
Nicola
,
L.
,
2022
, “
Lubrication of Rough Copper With Few-Layer Graphene
,”
Tribol. Int.
,
173
, p.
107621
.
21.
Javeed
,
A.
,
John
,
B.
, and
Mana
,
A. P.
,
2021
, “
Tribological Performance of Engine Oil With Graphene Oxide Nano Additives on Cylinder Liner Honing Surface at High Contact Pressure
,”
Mater. Today: Proc.
,
45
, pp.
4008
4011
.
22.
Chen
,
Y. C.
,
Guan
,
Z. Z.
,
Liu
,
J. N.
,
Yang
,
W.
, and
Wang
,
H. L.
,
2022
, “
Anomalous Layer-Dependent Lubrication on Graphene-Covered Substrate: Competition Between Adhesion and Plasticity
,”
Appl. Surf. Sci.
,
598
, p.
153762
.
23.
Kinoshit
,
H.
,
Nishina
,
Y.
,
Alias
,
A. A.
, and
Fujii
,
M.
,
2014
, “
Tribological Properties of Monolayer Graphene Oxide Sheets as Water-Based Lubricant Additives
,”
Carbon
,
66
, pp.
720
723
.
24.
Wu
,
L. P.
,
Zhong
,
Y.
,
Yuan
,
H. Y.
,
Liang
,
H.
,
Wang
,
F.
, and
Gu
,
L.
,
2022
, “
Ultra-Dispersive Sulfonated Graphene as Water-Based Lubricant Additives for Enhancing Tribological Performance
,”
Tribol. Int.
,
174
, p.
107759
.
25.
Min
,
C. Y.
,
He
,
Z. B.
,
Song
,
H. J.
,
Liang
,
H. Y.
,
Liu
,
D. D.
,
Dong
,
C. K.
, and
Jia
,
W.
,
2019
, “
Fluorinated Graphene Oxide Nanosheet: A Highly Efficient Water-Based Lubricated Additive
,”
Tribol. Int.
,
140
, p.
105867
.
26.
Gan
,
Y.
,
Sun
,
L.
, and
Banhart
,
F.
,
2008
, “
One-Dimensional and Two-Dimensional Diffusion of Metal Atoms in Graphene
,”
Small
,
4
(
5
), pp.
587
591
.
27.
Ma
,
L.
,
Li
,
Z. P.
,
Jia
,
W. H.
,
Hou
,
K. M.
,
Wang
,
J. Q.
, and
Yang
,
S. R.
,
2021
, “
Microwave-Assisted Synthesis of Hydroxyl Modified Fluorinated Graphene With High Fluorine Content and Its High Load-Bearing Capacity as Water Lubricant Additive for Ceramic/Steel Contact
,”
Colloid. Surface A
,
610
, p.
125931
.
28.
Niu
,
L. Y.
,
Li
,
Z. P.
,
Hong
,
W.
,
Sun
,
J. F.
,
Wang
,
Z. F.
,
Ma
,
L.
,
Wang
,
J. F.
, and
Yang
,
S. R.
,
2013
, “
Pyrolytic Synthesis of Boron-Doped Graphene and Its Application as Electrode Material for Supercapacitors
,”
Electrochim. Acta
,
108
, pp.
666
673
.
29.
Zhang
,
B. Z.
,
Zhang
,
G. G.
,
Cheng
,
Z. W.
,
Ma
,
F.
, and
Lu
,
Z. B.
,
2019
, “
Atomic-Scale Friction Adjustment Enabled by Doping-Induced Modification in Graphene Nanosheet
,”
Appl. Surf. Sci.
,
483
, pp.
742
749
.
30.
Wang
,
B. B.
,
Hu
,
E. Z.
, and
Tu
,
Z. Q.
,
2018
, “
Characterization and Tribological Properties of Rice Husk Carbon Nanoparticles Co-Doped With Sulfur and Nitrogen
,”
Appl. Surf. Sci.
,
462
, pp.
944
954
.
31.
Vinay Jaiswal
,
K.
,
Umrao
,
S.
,
Rastogi
,
R. B.
,
Kumar
,
R.
, and
Srivastava
,
A.
,
2016
, “
Synthesis, Characterization, and Tribological Evaluation of TiO2-Reinforced Boron and Nitrogen Co-Doped Reduced Graphene Oxide Based Hybrid Nano Materials as Efficient Anti-Wear Lubricant Additives
,”
ACS Appl. Mater. Interfaces
,
8
(
18
), pp.
11698
11710
.
32.
Pan
,
C.
,
Wei
,
Q.
,
Zhang
,
X. R.
,
Huang
,
Y. L.
,
Liu
,
D. L.
,
Tang
,
W. T.
,
Ouyang
,
T. C.
,
Liang
,
L. Z.
,
Tian
,
Z. Q.
, and
Shen
,
P. K.
,
2022
, “
Bottom-Up Synthesis of Few-Layered Graphene Powders and Their Applications as Efficient Lubricating and Electromagnetic Shielding Additives
,”
FlatChem
,
33
, p.
100375
.
33.
Ouyang
,
T. C.
,
Shen
,
Y. D.
,
Yang
,
R.
,
Liang
,
L. Z.
,
Liang
,
H.
,
Lin
,
B.
,
Tian
,
Z. Q.
, and
Shen
,
P. K.
,
2020
, “
3D Hierarchical Porous Graphene Nanosheets as an Efficient Grease Additive to Reduce Wear and Friction Under Heavy-Load Conditions
,”
Tribol. Int.
,
144
, p.
106118
.
You do not currently have access to this content.