Abstract

Copper matrix incorporated with solid lubricant and hard ceramic reinforcement is a proven potential material for wind turbine brake pad applications. Though brake pads as bulk composites possess high wear resistance, hard ceramic reinforcements at the contact area weaken the joint strength with the brake caliper. This may lead to cataclysmic failure of the mechanical braking. This study aims to develop a functionally gradient materials (FGM) for brake pads that shows variations in composition and properties along its cross section. The brake pad comprises Cu, Fe, hBN, SiC, and Al2O3 powder to obtain a gradient composition profile. Metallographic studies showed the homogeneous distribution of minor matrix (Fe), solid lubricant (hBN), and reinforcement (SiC, Al2O3). Phase analysis was carried out using XRD, and Vickers microhardness tests were performed. A maximum hardness of 133.3 HV was obtained at the top layer of the FGM. Pin-on-disc wear apparatus was used to evaluate the wear-rate and the coefficient of friction (COF) of the sintered specimen at varied loads. Specimens exhibited a low wear-rate of 2.36 × 10−7 g/N m with 0.48 as the COF value at a maximum loading condition (70 N). Surface characterization (morphology, chemical composition, and phase composition) of worn specimens was performed using FESEM, EDS, and XRD analytical techniques. The results inferred that the predominant wear mechanism was oxidative and abrasive wear mechanism at high loads.

References

1.
Kawasaki
,
A.
, and
Watanabe
,
R.
,
1997
, “
Concept and P/M Fabrication of Functionally Gradient Materials
,”
Ceram. Int.
,
23
(
1
), pp.
73
83
.
2.
Upadhyaya
,
G. S.
,
1997
,
Powder Metallurgy Technology
,
Cambridge International Science Publishing
,
Cambridge, UK
.
3.
Bagheri
,
G. A.
,
2016
, “
The Effect of Reinforcement Percentages on Properties of Copper Matrix Composites Reinforced With TiC Particles
,”
J. Alloys Compd.
,
676
, pp.
120
126
.
4.
Tjong
,
S.
, and
Lau
,
K.
,
2000
, “
Abrasive Wear Behavior of TiB2 Particle-Reinforced Copper Matrix Composites
,”
Mater. Sci. Eng. A
,
282
(
1–2
), pp.
183
186
.
5.
Tian
,
Y.-N.
,
Dou
,
Z.-H.
,
Niu
,
L.-P.
, and
Zhang
,
T.-A.
,
2020
, “
Effects of Titanium Nitride Particles on Copper Matrix-Graphite Composite Properties
,”
Russ. J. Non-Ferrous Met.
,
61
(
3
), pp.
387
395
.
6.
Ayyappadas
,
C.
,
Annamalai
,
A. R.
,
Agrawal
,
D. K.
, and
Muthuchamy
,
A.
,
2017
, “
Conventional and Microwave Assisted Sintering of Copper-Silicon Carbide Metal Matrix Composites: A Comparison
,”
Metall. Res. Technol.
,
114
(
5
), p.
506
.
7.
Wang
,
X.
,
Wei
,
S.
,
Xu
,
L.
,
Fang
,
F.
,
Li
,
J.
,
Pan
,
K.
, and
Peng
,
B.
,
2019
, “
Effect of Sintering Temperature on Fine-Grained CuW Composites With High Copper
,”
Mater. Charact.
,
153
, pp.
121
127
.
8.
Tian
,
Y.-N.
,
Dou
,
Z.-H.
,
Niu
,
L.
, and
Zhang
,
T.-A.
,
2019
, “
Studies on Copper-Coated Boron Carbide Particle-Reinforced Copper-Matrix/Graphite Self-Lubricating Composite Materials
,”
Russ. J. Non-Ferrous Met.
,
60
(
5
), pp.
575
582
.
9.
Dash
,
K.
,
Panda
,
S.
, and
Ray
,
B.
,
2013
, “
Process and Progress of Sintering Behavior of Cu–Al2O3 Composites
,”
Emerging Mater. Res.
,
2
(
1
), pp.
32
38
.
10.
Tjong
,
S.
, and
Lau
,
K.
,
2000
, “
Tribological Behaviour of SiC Particle-Reinforced Copper Matrix Composites
,”
Mater. Lett.
,
43
(
5–6
), pp.
274
280
.
11.
Efe
,
G. C.
,
Zeytin
,
S.
, and
Bindal
,
C.
,
2012
, “
The Effect of SiC Particle Size on the Properties of Cu–SiC Composites
,”
Mater. Des.
,
36
, pp.
633
639
.
12.
Somani
,
N.
,
Tyagi
,
Y.
,
Kumar
,
P.
,
Srivastava
,
V.
, and
Bhowmick
,
H.
,
2018
, “
Enhanced Tribological Properties of SiC Reinforced Copper Metal Matrix Composites
,”
Mater. Res. Express
,
6
(
1
), p.
016549
.
13.
Akbarpour
,
M.
,
Najafi
,
M.
,
Alipour
,
S.
, and
Kim
,
H.
,
2019
, “
Hardness, Wear and Friction Characteristics of Nanostructured Cu–SiC Nanocomposites Fabricated by Powder Metallurgy Route
,”
Mater. Today Commun.
,
18
, pp.
25
31
.
14.
Meher
,
A.
, and
Chaira
,
D.
,
2017
, “
Effect of Graphite and SiC Addition Into Cu and SiC Particle Size Effect on Fabrication of Cu–Graphite–SiC MMC by Powder Metallurgy
,”
Trans. Indian Inst. Met.
,
70
(
8
), pp.
2047
2057
.
15.
Mahato
,
A.
, and
Mondal
,
S.
,
2021
, “
Fabrication and Microstructure of Micro and Nano Silicon Carbide Reinforced Copper Metal Matrix Composites/Nanocomposites
,”
Silicon
,
13
(
4
), pp.
1097
1105
.
16.
Stadler
,
Z.
,
Krnel
,
K.
, and
Kosmac
,
T.
,
2007
, “
Friction Behavior of Sintered Metallic Brake Pads on a C/C–SiC Composite Brake Disc
,”
J. Eur. Ceram. Soc.
,
27
(
2–3
), pp.
1411
1417
.
17.
Maree
,
I. E.
, 2021, “
Copper Metal Matrix Composite [CMMC] Behavior at Cold Compaction
,”
J. Sci. Eng.
,
7
(
1
), pp.
163
173
.
18.
Si
,
L.
,
Liu
,
C.
,
Yan
,
H.
,
Wang
,
Y.
,
Yang
,
Y.
,
Zhang
,
S.
, and
Zhang
,
Y.
,
2021
, “
The Influences of High Temperature on Tribological Properties of Cu-Based Friction Materials With a Friction Phase of SiO2/SiC/Al2O3
,”
AIP Adv.
,
11
(
2
), p.
025335
.
19.
Boz
,
M.
, and
Kurt
,
A.
,
2007
, “
The Effect of Al2O3 on the Friction Performance of Automotive Brake Friction Materials
,”
Tribol. Int.
,
40
(
7
), pp.
1161
1169
.
20.
Xiong
,
X.
,
Chen
,
J.
,
Yao
,
P.
,
Li
,
S.
, and
Huang
,
B.
,
2007
, “
Friction and Wear Behaviors and Mechanisms of Fe and SiO2 in Cu-Based P/M Friction Materials
,”
Wear
,
262
(
9–10
), pp.
1182
1186
.
21.
Zhou
,
H.
,
Yao
,
P.
,
Xiao
,
Y.
,
Fan
,
K.
,
Zhang
,
Z.
,
Gong
,
T.
,
Zhao
,
L.
,
Deng
,
M.
,
Liu
,
C.
, and
Ling
,
P.
,
2019
, “
Friction and Wear Maps of Copper Metal Matrix Composites With Different Iron Volume Content
,”
Tribol. Int.
,
132
, pp.
199
210
.
22.
Fan
,
J.
,
Zhang
,
C.
,
Wu
,
S.
,
Jia
,
D.
,
Sun
,
L.
,
Li
,
Y.
, and
Liu
,
J.
,
2018
, “
Effect of Cr–Fe on Friction and Wear Properties of Cu-Based Friction Material
,”
Mater. Sci. Technol.
,
34
(
7
), pp.
869
875
.
23.
Österle
,
W.
, and
Dmitriev
,
A. I.
,
2016
, “
The Role of Solid Lubricants for Brake Friction Materials
,”
Lubricants
,
4
(
1
), p.
5
.
24.
Cho
,
M. H.
,
Ju
,
J.
,
Kim
,
S. J.
, and
Jang
,
H.
,
2006
, “
Tribological Properties of Solid Lubricants (Graphite, Sb2S3, MoS2) for Automotive Brake Friction Materials
,”
Wear
,
260
(
7–8
), pp.
855
860
.
25.
Chen
,
B.
,
Bi
,
Q.
,
Yang
,
J.
,
Xia
,
Y.
, and
Hao
,
J.
,
2008
, “
Tribological Properties of Solid Lubricants (Graphite, h-BN) for Cu-Based P/M Friction Composites
,”
Tribol. Int.
,
41
(
12
), pp.
1145
1152
.
26.
Abd El Aal
,
M. I.
, and
Kim
,
H.
,
2018
, “
Effect of the Fabrication Method on the Wear Properties of Copper Silicon Carbide Composites
,”
Tribol. Int.
,
128
, pp.
140
154
.
27.
Kannan
,
K. R.
,
Vignesh
,
R. V.
,
Kalyan
,
K. P.
,
Murugesan
,
J.
,
Megalingam
,
A.
,
Padmanaban
,
R.
, and
Govindaraju
,
M.
,
2019
, “
Tribological Performance of Heavy-Duty Functionally Gradient Friction Material (Cu–Sn–Fe–Cg–SiC–Al2O3) Synthesized by PM Route
,”
AIP Conference Proceedings
,
Tamil Nadu, India
,
Mar. 8–9
,
AIP Publishing LLC
, p.
020004
.
28.
Vignesh
,
R. V.
, and
Padmanaban
,
R.
,
2018
, “
Influence of Friction Stir Processing Parameters on the Wear Resistance of Aluminium Alloy AA5083
,”
Mater. Today: Proc.
,
5
(
2
), pp.
7437
7446
.
29.
Govindaraju
,
M.
,
Megalingam
,
A.
,
Murugasan
,
J.
,
Vignesh
,
R. V.
,
Kota
,
P. K.
,
Ram
,
A. S.
,
Lakshana
,
P.
, and
Kumar
,
V. N.
,
2020
, “
Investigations on the Tribological Behavior of Functionally Gradient Iron-Based Brake Pad Material
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
234
(
12
), pp.
2474
2486
.
30.
Rajesh Kannan
,
K.
,
Govindaraju
,
M.
, and
Vaira Vignesh
,
R.
,
2021
, “
Development of Fly Ash Based Friction Material for Wind Turbines by Liquid Phase Sintering Technology
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
235
(
7
), pp.
1463
1469
.
31.
Alex
,
A. J.
,
Vignesh
,
R. V.
,
Padmanaban
,
R.
, and
Govindaraju
,
M.
,
2020
, “
Effect of Heat Treatment on the Mechanical and Wear Behavior of Friction Stir Processed AA5052 Alloy
,”
Mater. Today: Proc.
,
22
, Part 4, pp.
3340
3346
.
32.
Keshav
,
M. G.
,
Hemchandran
,
C. G.
,
Dharsan
,
B.
,
Pradhin
,
K.
,
Vignesh
,
R. V.
, and
Govindaraju
,
M.
,
2021
, “
Manufacturing of Continuous Fiber Reinforced Sintered Brake Pad and Friction Material
,”
Mater. Today: Proc.
,
46
, Part 10, pp.
4493
4496
.
33.
Kannan
,
K. R.
,
Vignesh
,
R. V.
,
Kalyan
,
K. P.
, and
Govindaraju
,
M.
,
2021
, “
Development and Tribological Characterization of Fly Ash Reinforced Iron Based Functionally Gradient Friction Materials
,”
Eng. Rev.
,
41
(
3
).
34.
Abbas
,
M.
,
Rao
,
B. P.
,
Naga
,
S.
,
Takahashi
,
M.
, and
Kim
,
C.
,
2013
, “
Synthesis of High Magnetization Hydrophilic Magnetite (Fe3O4) Nanoparticles in Single Reaction—Surfactantless Polyol Process
,”
Ceram. Int.
,
39
(
7
), pp.
7605
7611
.
You do not currently have access to this content.