Abstract

Honing is one of the abrasive-based machining processes to remove material through the asperity interaction between numerous stochastic grains distributed on oilstone (also called honing stone) and workpiece. Therefore, the oilstone surface topography characterized by grain morphology, size, posture and position distribution, protrusion heights and etc. is of great significance to understand honing mechanism in terms of establishing an accurate kinematic model and further analyzing the oilstone property's impact on honing process and honed surface texture characteristics including groove density, roughness heights, and plateau/valley amplitudes. Conventionally, two typical approaches have been employed to establish the surface topography of abrasive-based cutting tools: experimentally microscopic observation and backward modeling/simulation from the assumed ideal distribution laws such as Gaussian or uniform distribution for stochastic grain characteristics. The first method is usually time-consuming and only measures surface topography within rather small area, whereas the second one is highly dependent on the authenticity of assumed statistical distribution laws. To overcome these weaknesses, the research proposed a functional forward method (FFM) to accurately predict surface topography of oilstone based on simulating its manufacturing processes in succession to avoid distributional assumptions and geometrical simplification. The methodology takes into consideration five important stochastic characteristics of oilstone including grain morphology, size, posture, position distribution, and grain wear during honing process, to guarantee the credibility, authenticity, and generality of the surface topography generated from honing. Based on the oilstone surface topography, the kinematic simulation method (KISM) was applied to analyze the honed surface texture characteristics of cylinder bore with oilstone samples under different stirring times. Therefore, the methodology bridges oilstone manufacturing parameters, oilstone surface topography, and further the honed surface texture to provide a fresh insight into the parameter’s optimization of the oilstone manufacturing process by achieving a better control on the honed surface texture of the cylinder bore.

References

1.
Yang
,
C.
,
Su
,
H.
,
Gao
,
S.
,
Fu
,
Y.
,
Ding
,
W.
, and
Xu
,
J.
,
2021
, “
Surface Quality and Geometric Accuracy Control of Fuel Nozzle Single-Pass Honing
,”
Int. J. Adv. Manuf. Technol.
,
114
(
11–12
), pp.
3325
3336
.
2.
Campbell
,
J. C.
,
1972
, “
Cylinder Bore Surface Roughness in Internal Combustion Engines: Its Appreciation and Control
,”
Wear
,
19
(
2
), pp.
163
168
.
3.
Pawlus
,
P.
,
1994
, “
A Study on the Functional Properties of Honed Cylinders Surface During Running-In
,”
Wear
,
176
(
2
), pp.
247
254
.
4.
Johansson
,
S.
,
Nilsson
,
P. H.
,
Ohlsson
,
R.
,
Anderberg
,
C.
, and
Rosén
,
B. G.
,
2008
, “
New Cylinder Liner Surfaces for Low Oil Consumption
,”
Tribol. Int.
,
41
(
9–10
), pp.
854
859
.
5.
Noaker
,
P. M.
,
1991
, “
Hone up on Production Honing
,”
Manuf. Eng.
,
106
(
2
), pp.
57
60
.
6.
Zahouani
,
H.
, and
EL Mansori
,
M.
,
2017
, “
Multi-Scale and Multi-Fractal Analysis of Abrasive Wear Signature of Honing Process
,”
Wear
,
376–377
(
4
), pp.
178
187
.
7.
Pettersson
,
U.
, and
Jacobson
,
S.
,
2004
, “
Friction and Wear Properties of Micro Textured DLC Coated Surfaces in Boundary Lubricated Sliding
,”
Tribol. Lett.
,
17
(
3
), pp.
553
559
.
8.
Mezghani
,
S.
,
Demirci
,
I.
,
Yousfi
,
M.
, and
El Mansori
,
M.
,
2013
, “
Mutual Influence of Crosshatch Angle and Superficial Roughness of Honed Surfaces on Friction in Ring-Pack Tribo-System
,”
Tribol. Int.
,
66
(
10
), pp.
54
59
.
9.
Maddox
,
S. R.
,
Gangopadhyay
,
A.
,
Ghaednia
,
H.
,
Cai
,
J.
,
Han
,
X.
,
Meng
,
X.
,
Goss
,
J. A.
, and
Zou
,
M.
,
2021
, “
Fabrication and Testing of Bioinspired Surface Designs for Friction Reduction at the Piston Ring and Liner Interface
,”
ASME J. Tribol.
,
143
(
5
), p.
051109
.
10.
Demirci
,
I.
,
Mezghani
,
S.
,
Yousfi
,
M.
, and
El Mansori
,
M.
,
2014
, “
Multiscale Analysis of the Roughness Effect on Lubricated Rough Contact
,”
ASME J. Tribol.
,
136
(
1
), p.
011501
.
11.
Fang
,
S.
,
Herrmann
,
T.
,
Rosenkranz
,
A.
,
Gachot
,
C.
,
Marro
,
F. G.
,
Mücklich
,
F.
,
Llanes
,
L.
, and
Bähre
,
D.
,
2016
, “
Tribological Performance of Laser Patterned Cemented Tungsten Carbide Parts
,”
Procedia CIRP
,
42
(
ISEM XVIII
), pp.
439
443
.
12.
Fang
,
S.
,
Klein
,
S.
,
Hsu
,
C. J.
,
Llanes
,
L.
,
Gachot
,
C.
, and
Bähre
,
D.
,
2019
, “
Fabrication and Tribological Performance of a Laser-Textured Hard Metal Guiding Stone for Honing Processes
,”
Int. J. Refract. Met. Hard Mater.
,
84
(
7
), p.
105034
.
13.
Buj-Corral
,
I.
,
Álvarez-Flórez
,
J.
, and
Domínguez-Fernández
,
A.
,
2018
, “
Acoustic Emission Analysis for the Detection of Appropriate Cutting Operations in Honing Processes
,”
Mech. Syst. Signal Process
,
99
(
1
), pp.
873
885
.
14.
Zou
,
L.
,
Liu
,
X.
,
Huang
,
Y.
, and
Fei
,
Y.
,
2019
, “
A Numerical Approach to Predict the Machined Surface Topography of Abrasive Belt Flexible Grinding
,”
Int. J. Adv. Manuf. Technol.
,
104
(
5–8
), pp.
2961
2970
.
15.
Kapłonek
,
W.
, and
Nadolny
,
K.
,
2013
, “
Assessment of the Grinding Wheel Active Surface Condition Using SEM and Image Analysis Techniques
,”
J. Braz. Soc. Mech. Sci. Eng.
,
35
(
3
), pp.
207
215
.
16.
Kang
,
M.
,
Zhang
,
L.
, and
Tang
,
W.
,
2020
, “
Study on Three-Dimensional Topography Modeling of the Grinding Wheel With Image Processing Techniques
,”
Int. J. Mech. Sci.
,
167
(
2
), p.
105241
.
17.
Yan
,
L.
,
Rong
,
Y.
, and
Jiang
,
F.
,
2011
, “
Quantitative Evaluation and Modeling of Alumina Grinding Wheel Surface Topography
,”
Chin. J. Mech. Eng.
,
47
(
17
), pp.
179
186
.
18.
Brakhage
,
K.
,
Makowski
,
M.
,
Klocke
,
F.
, and
Weiss
,
M.
,
2013
, “
Grinding Wheel Modeling : Development of a Mathematical Model
,”
MASCOT Proceedings—IMACS Series in Computational and Applied Mathematics
,
Roma, Italy
,
Oct. 19–21
, Vol. 17, pp.
31
40
.
19.
Huo
,
F.
,
2007
, “
Measurement and Evaluation of the Surface Topography of Fine Diamond Grinding Wheel
,”
Chin. J. Mech. Eng.
,
43
(
10
), pp.
108
113
.
20.
Liu
,
J.
,
Chen
,
W. Y.
, and
Chen
,
F.
,
2012
, “
Three-Dimensional Wheel Topography Measurement With Laser Triangulation
,”
Key Eng. Mater.
,
499
, pp.
384
389
.
21.
Chang
,
S. H.
,
Farris
,
T. N.
, and
Chandrasekar
,
S.
,
2000
, “
Contact Mechanics of Superfinishing
,”
ASME J. Tribol.
,
122
(
2
), pp.
388
393
.
22.
Cai
,
R.
, and
Rowe
,
W. B.
,
2004
, “
Assessment of Vitrified CBN Wheels for Precision Grinding
,”
Int. J. Mach. Tools Manuf.
,
44
(
12
), pp.
1391
1402
.
23.
Panda
,
S.
,
Panzade
,
A.
,
Sarangi
,
M.
, and
Roy Chowdhury
,
S. K.
,
2017
, “
Spectral Approach on Multiscale Roughness Characterization of Nominally Rough Surfaces
,”
ASME J. Tribol.
,
139
(
3
), p.
031402
.
24.
Wen
,
X. N.
,
2014
, “
Modeling and Predicting Surface Roughness for the Grinding Process
,”
Appl. Mech. Mater.
,
599–601
(
IV
), pp.
622
625
.
25.
Feng
,
Q.
,
Ren
,
C.
, and
Pei
,
Z.
,
2015
, “
A Physics-Based Predictive Model for Number of Contact Grains and Grain Depth of Cut in Honing
,”
Mach. Sci. Technol.
,
19
(
1
), pp.
50
70
.
26.
Wang
,
Q.
,
2012
,
Material Removal Mechanism and Surface Generation in Surface Contact Grinding
,
Tianjin University
,
Tianjin, China
.
27.
Li
,
X.
,
Wolf
,
S.
,
Zhi
,
G.
, and
Rong
,
Y. K.
,
2014
, “
The Modelling and Experimental Verification of the Grinding Wheel Topographical Properties Based on the ‘Through-the-Process’ Method
,”
Int. J. Adv. Manuf. Technol.
,
70
(
1–4
), pp.
649
659
.
28.
Liu
,
Y.
,
Gong
,
Y.
, and
Cao
,
Z.
,
2012
, “
Analysis of Numerical Grinding Wheel Topology and Experimental Measurement
,”
Chin. J. Mech. Eng.
,
48
(
23
), pp.
184
190
.
29.
Rom
,
M.
,
Brakhage
,
K. H.
,
Barth
,
S.
,
Wrobel
,
C.
,
Mattfeld
,
P.
, and
Klocke
,
F.
,
2018
, “
Mathematical Modeling of Ceramic Bond Bridges in Grinding Wheels
,”
Math. Comput. Simul.
,
147
(
5
), pp.
220
236
.
30.
Aurich
,
J. C.
, and
Kirsch
,
B.
,
2012
, “
Kinematic Simulation of High-Performance Grinding for Analysis of Chip Parameters of Single Grains
,”
CIRP J. Manuf. Sci. Technol.
,
5
(
3
), pp.
164
174
.
31.
Li
,
C.
,
Li
,
X.
,
Wu
,
Y.
,
Zhang
,
F.
, and
Huang
,
H.
,
2019
, “
Deformation Mechanism and Force Modelling of the Grinding of YAG Single Crystals
,”
Int. J. Mach. Tools Manuf.
,
143
(
3
), pp.
23
37
.
32.
Quan
,
J.
,
Fang
,
Q.
,
Chen
,
J.
,
Xie
,
C.
,
Liu
,
Y.
, and
Wen
,
P.
,
2017
, “
Investigation of Subsurface Damage Considering the Abrasive Particle Rotation in Brittle Material Grinding
,”
Int. J. Adv. Manuf. Technol.
,
90
(
9–12
), pp.
2461
2476
.
33.
Zhang
,
Y.
,
Wu
,
T.
,
Li
,
C.
,
Wang
,
Y.
,
Geng
,
Y.
, and
Dong
,
G.
,
2022
, “
Numerical Simulations of Grinding Force and Surface Morphology During Precision Grinding of Leucite Glass Ceramics
,”
Int. J. Mech. Sci.
,
231
(
7
), p.
107562
.
34.
Holtermann
,
R.
,
Schumann
,
S.
,
Menzel
,
A.
, and
Biermann
,
D.
,
2013
, “
Modelling, Simulation and Experimental Investigation of Chip Formation in Internal Traverse Grinding
,”
Prod. Eng.
,
7
(
2–3
), pp.
251
263
.
35.
Yan
,
X. L.
,
Wang
,
X. L.
, and
Zhang
,
Y. Y.
,
2014
, “
“Influence of Roughness Parameters Skewness and Kurtosis on Fatigue Life Under Mixed Elastohydrodynamic Lubrication Point Contacts
,”
ASME J. Tribol.
,
136
(
3
), p.
031503
.
36.
Klocke
,
F.
,
Barth
,
S.
,
Wrobel
,
C.
,
Weiß
,
M.
,
Mattfeld
,
P.
,
Brakhage
,
K. H.
, and
Rom
,
M.
,
2016
, “
Modelling of the Grinding Wheel Structure Depending on the Volumetric Composition
,”
Procedia CIRP
,
46
, pp.
276
280
.
37.
Li
,
Y.
,
Wang
,
S.
,
Sun
,
J.
, and
Zhou
,
J.
,
2010
, “
Development of Super-Hard Oilstone Used in Honing
,”
Tool Eng.
,
44
(
5
), pp.
12
16
.
38.
Webster
,
J.
, and
Tricard
,
M.
,
2004
, “
Innovations in Abrasive Products for Precision Grinding
,”
CIRP Ann.
,
53
(
2
), pp.
597
617
.
39.
Buj-Corral
,
I.
, and
Vivancos-Calvet
,
J.
,
2013
, “
Improvement of the Manufacturing Process of Abrasive Stones for Honing
,”
Int. J. Adv. Manuf. Technol.
,
68
(
9–12
), pp.
2517
2523
.
40.
Junnan
,
T.
,
2017
,
Manufacturing and Mechanical Property Study of Super-Hard Copper-Based Oilstone
,
Jiangsu University
,
Jiangsu, China
.
41.
Sardar
,
S.
,
Karmakar
,
S. K.
, and
Das
,
D.
,
2019
, “
Microstructure and Tribological Performance of Alumina-Aluminum Matrix Composites Manufactured by Enhanced Stir Casting Method
,”
ASME J. Tribol.
,
141
(
4
), p.
041602
.
42.
Antsiferov
,
S. I.
,
Tibeykin
,
V. V.
,
Fadin
,
Y. M.
, and
Karachevtseva
,
A. V.
,
2022
,
Digital Technologies in Construction
, 1st ed., Vol.
173
,
Springer
,
Cham
, pp.
115
124
.
43.
Samsonova
,
P. S.
,
Lozovaya
,
S. Y.
,
Bogdanov
,
N. E.
, and
Lozovoi
,
N. M.
,
2020
, “
Mixing Process Simulation of the Initial Building Materials Components Using the DEM Solution EDEM System
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
945
(
1
), p.
012028
.
44.
Tian
,
C.
,
Li
,
X.
,
Zhang
,
S.
,
Guo
,
G.
,
Wang
,
L.
, and
Rong
,
Y.
,
2018
, “
Study on Design and Performance of Metal-Bonded Diamond Grinding Wheels Fabricated by Selective Laser Melting (SLM)
,”
Mater. Des.
,
156
(
10
), pp.
52
61
.
45.
Tao
,
J. N.
,
Zhang
,
X. Z.
,
Liu
,
G. W.
,
Xu
,
Z. W.
,
Shao
,
H. C.
, and
Qiao
,
G. J.
,
2017
, “
Preparation and Mechanical Properties of Diamond Honing Oilstone
,”
Mater. Sci. Forum
,
893
, pp.
354
359
.
46.
Nadolny
,
K.
, and
Herman
,
D.
,
2015
, “
Effect of Vitrified Bond Microstructure and Volume Fraction in the Grinding Wheel on Traverse Internal Cylindrical Grinding of Inconel® Alloy 600
,”
Int. J. Adv. Manuf. Technol.
,
81
(
5–8
), pp.
905
915
.
47.
Nadolny
,
K.
,
Kapłonek
,
W.
,
Królczyk
,
G.
, and
Ungureanu
,
N.
,
2018
, “
The Effect of Active Surface Morphology of Grinding Wheel With Zone-Diversified Structure on the Form of Chips in Traverse Internal Cylindrical Grinding of 100Cr6 Steel
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
232
(
6
), pp.
965
978
.
48.
Fengqin
,
H.
,
2015
,
The Simulation of Key Technical Parameters and Internal Flow Field of Mixer
,
Zhengzhou University
,
Zhengzhou, China
.
49.
Ding
,
W. F.
,
Miao
,
Q.
,
Zhu
,
Y. J.
,
Xu
,
J. H.
, and
Fu
,
Y. C.
,
2016
, “
Comparative Investigation on Wear Behavior and Self-Sharpening Phenomenon of Polycrystalline Cubic Boron Nitride and Monocrystalline Cubic Boron Nitride Grains in High-Speed Grinding
,”
Proc. Inst. Mech. Eng. Part B J Eng. Manuf.
,
230
(
4
), pp.
710
721
.
50.
Hwang
,
T. W.
,
Evans
,
C. J.
,
Whitenton
,
E. P.
, and
Malkin
,
S.
,
1999
, “
High Speed Grinding of Silicon Nitride With Electroplated Diamond Wheels: I-Wear and Wheel Life
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition. Manufacturing Science and Engineering
,
Nashville, TN
,
Nov. 14–19
, pp.
431
441
.
51.
Zhang
,
X.
,
Wang
,
X.
,
Wang
,
D.
,
Yao
,
Z.
,
Xi
,
L.
, and
Wang
,
X.
,
2017
, “
Methodology to Improve the Cylindricity of Engine Cylinder Bore by Honing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031008
.
52.
Zhou
,
Z.
,
Zhang
,
X.
,
Yao
,
Z.
, and
Xi
,
L.
,
2017
, “
Predicting Multi-Scale Dimensional Accuracy of Engine Cylinder by Honing
,”
Int. Manuf. Sci. Eng. Conf
,
50725
, p.
V001T02A023
.
53.
Chakrabarti
,
S.
, and
Paul
,
S.
,
2008
, “
Numerical Modelling of Surface Topography in Superabrasive Grinding
,”
Int. J. Adv. Manuf. Technol.
,
39
(
1–2
), pp.
29
38
.
54.
Barros
,
G. H. C.
,
Schramm
,
C. R.
,
Franco
,
S. D.
,
Arantes
,
L. J.
, and
Arencibia
,
R. V.
,
2019
, “
Effect of Grain Size and Number of Strokes on Rk Parameters and Emptiness Coefficient in Honing Process
,”
Int. J. Adv. Manuf. Technol.
,
103
(
9–12
), pp.
3717
3734
.
55.
Sabri
,
L.
,
Mezghani
,
S.
, and
EL Mansori
,
M.
,
2010
, “
Functional Optimization of Production by Honing Engine Cylinder Liner
,”
Mech. Ind.
,
11
(
5
), pp.
365
377
.
You do not currently have access to this content.