Abstract

Ti-6Al-4V titanium alloy manufactured by selective laser melting (SLM) has a unique structure and properties. They offer a higher yield and ultimate tensile strengths but lower ductility than traditionally processed samples. SLMed Ti-6Al-4V alloys induced increased ductility but decreased tensile strengths after thermal treatment at 840 °C for 2 h. Sliding wearing tests and cutting experiments were conducted to further understand the effects of heat treatment on machinability. The results showed that as-built SLMed Ti-6Al-4V samples presented lower coefficients of friction but higher wear-rates than heat-treated ones due to their delamination caused by cracks. Cutting forces of as-built samples were lower during milling than that of heat-treated samples. Nevertheless, better surface roughness was produced when heat-treated samples were machined. Moreover, the optimal cutting parameters for both materials were the same.

References

1.
Dutta
,
B.
, and
Froes
,
F. H.
,
2017
, “
The Additive Manufacturing (AM) of Titanium Alloys
,”
Met. Powder Rep.
,
72
(
2
), pp.
96
106
.
2.
Yap
,
C. Y.
,
Chua
,
C. K.
,
Dong
,
Z. L.
,
Liu
,
Z. H.
,
Zhang
,
D. Q.
,
Loh
,
L. E.
, and
Sing
,
S. L.
,
2015
, “
Review of Selective Laser Melting: Materials and Applications
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041101
.
3.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Humbeeck
,
J. V.
, and
Kruth
,
J.-P.
,
2010
, “
A Study of the Microstructural Evolution During Selective Laser Melting of Ti–6Al–4 V
,”
Acta Mater.
,
58
(
9
), pp.
3303
3312
.
4.
Qiu
,
C.
,
Panwisawas
,
C.
,
Ward
,
M.
,
Basoalto
,
H. C.
,
Brooks
,
J. W.
, and
Attallah
,
M. M.
,
2015
, “
On the Role of Melt Flow Into the Surface Structure and Porosity Development During Selective Laser Melting
,”
Acta Mater.
,
96
, pp.
72
79
.
5.
Song
,
B.
,
Dong
,
S.
,
Zhang
,
B.
,
Liao
,
H.
, and
Coddet
,
C.
,
2012
, “
Effects of Processing Parameters on Microstructure and Mechanical Property of Selective Laser Melted Ti6Al4V
,”
Mater. Des.
,
35
, pp.
120
125
.
6.
Xu
,
W.
,
Brandt
,
M.
,
Sun
,
S.
,
Elambasseril
,
J.
,
Liu
,
Q.
,
Latham
,
K.
,
Xia
,
K.
, and
Qian
,
M.
,
2015
, “
Additive Manufacturing of Strong and Ductile Ti–6Al–4 V by Selective Laser Melting via In Situ Martensite Decomposition
,”
Acta Mater.
,
85
, pp.
74
84
.
7.
Shunmugavel
,
M.
,
Polishetty
,
A.
, and
Littlefair
,
G.
,
2015
, “
Microstructure and Mechanical Properties of Wrought and Additive Manufactured Ti-6Al-4V Cylindrical Bars
,”
Proc. Technol.
,
20
, pp.
231
236
.
8.
Al-Rubaie
,
K. S.
,
Melotti
,
S.
,
Rabelo
,
A.
,
Paiva
,
J. M.
,
Elbestawi
,
M. A.
, and
Veldhuis
,
S. C.
,
2020
, “
Machinability of SLM-Produced Ti6Al4V Titanium Alloy Parts
,”
J. Manuf. Process.
,
57
, pp.
768
786
.
9.
Zhu
,
Y.
,
Chen
,
X.
,
Zou
,
J.
, and
Yang
,
H.
,
2016
, “
Sliding Wear of Selective Laser Melting Processed Ti6Al4V Under Boundary Lubrication Conditions
,”
Wear
,
368–369
, pp.
485
495
.
10.
Zhang
,
W.
,
Qin
,
P.
,
Wang
,
Z.
,
Yang
,
C.
,
Kollo
,
L.
,
Grzesiak
,
D.
, and
Prashanth
,
K. G.
,
2019
, “
Superior Wear Resistance in EBM-Processed TC4 Alloy Compared With SLM and Forged Samples
,”
Materials
,
12
(
5
), p.
782
.
11.
Gu
,
D.
,
Hagedorn
,
Y.-C.
,
Meiners
,
W.
,
Meng
,
G.
,
Batista
,
R. J. S.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Densification Behavior, Microstructure Evolution, and Wear Performance of Selective Laser Melting Processed Commercially Pure Titanium
,”
Acta Mater.
,
60
(
9
), pp.
3849
3860
.
12.
Shunmugavel
,
M.
,
Polishetty
,
A.
,
Goldberg
,
M.
,
Singh
,
R.
, and
Littlefair
,
G.
,
2017
, “
A Comparative Study of Mechanical Properties and Machinability of Wrought and Additive Manufactured (Selective Laser Melting) Titanium Alloy—Ti-6Al-4V
,”
Rapid Prototyp. J.
,
23
(
6
), pp.
1051
1056
.
13.
Zhu
,
Y.
,
Zou
,
J.
, and
Yang
,
H.-y.
,
2018
, “
Wear Performance of Metal Parts Fabricated by Selective Laser Melting: A Literature Review
,”
J. Zhejiang Univ. Sci. A
,
19
(
2
), pp.
95
110
.
14.
Kang
,
N.
,
El Mansori
,
M.
,
Feng
,
E.
,
Zhao
,
C.
,
Zhao
,
Y.
, and
Lin
,
X.
,
2022
, “
Sliding Wear and Induced-Microstructure of Ti-6Al-4V Alloys: Effect of Additive Laser Technology
,”
Tribol. Int.
,
173
, p.
107633
.
15.
Ju
,
J.
,
Zhao
,
C.
,
Kang
,
M.
,
Li
,
J.
,
He
,
L.
,
Wang
,
C.
,
Li
,
J.
,
Fu
,
H.
, and
Wang
,
J.
,
2021
, “
Effect of Heat Treatment on Microstructure and Tribological Behavior of Ti–6Al–4 V Alloys Fabricated by Selective Laser Melting
,”
Tribol. Int.
,
159
, p.
106996
.
16.
Renner
,
P.
,
Jha
,
S.
,
Chen
,
Y.
,
Raut
,
A.
,
Mehta
,
S. G.
, and
Liang
,
H.
,
2021
, “
A Review on Corrosion and Wear of Additively Manufactured Alloys
,”
ASME J. Tribol.
,
143
(
5
), p.
050802
.
17.
de Oliveira Campos
,
F.
,
Araujo
,
A. C.
,
Jardini Munhoz
,
A. L.
, and
Kapoor
,
S. G.
,
2020
, “
The Influence of Additive Manufacturing on the Micromilling Machinability of Ti6Al4V: A Comparison of SLM and Commercial Workpieces
,”
J. Manuf. Process.
,
60
, pp.
299
307
.
18.
Polishetty
,
A.
,
Shunmugavel
,
M.
,
Goldberg
,
M.
,
Littlefair
,
G.
, and
Singh
,
R. K.
,
2017
, “
Cutting Force and Surface Finish Analysis of Machining Additive Manufactured Titanium Alloy Ti-6Al-4V
,”
Procedia Manuf.
,
7
, pp.
284
289
.
19.
Bonaiti
,
G.
,
Parenti
,
P.
,
Annoni
,
M.
, and
Kapoor
,
S.
,
2017
, “
Micro-milling Machinability of DED Additive Titanium Ti-6Al-4V
,”
Procedia Manuf.
,
10
, pp.
497
509
.
20.
Hojati
,
F.
,
Daneshi
,
A.
,
Soltani
,
B.
,
Azarhoushang
,
B.
, and
Biermann
,
D.
,
2020
, “
Study on Machinability of Additively Manufactured and Conventional Titanium Alloys in Micro-Milling Process
,”
Precis. Eng.
,
62
, pp.
1
9
.
21.
Kang
,
N.
,
Coniglio
,
N.
,
Cao
,
Y.
,
Zhao
,
C.
,
El Mansori
,
M.
,
Zhao
,
Y.
,
Lin
,
X.
, and
Coddet
,
C.
,
2021
, “
Intrinsic Heat Treatment Induced Graded Surficial Microstructure and Tribological Properties of Selective Laser Melted Titanium
,”
ASME J. Tribol.
,
143
(
5
), p.
051102
.
22.
Das
,
M.
,
Balla
,
V. K.
,
Basu
,
D.
,
Bose
,
S.
, and
Bandyopadhyay
,
A.
,
2010
, “
Laser Processing of SiC-Particle-Reinforced Coating on Titanium
,”
Scr. Mater.
,
63
(
4
), pp.
438
441
.
23.
Ni
,
C.
,
Zhu
,
L.
,
Zheng
,
Z.
,
Zhang
,
J.
,
Yang
,
Y.
,
Yang
,
J.
,
Bai
,
Y.
,
Weng
,
C.
,
Lu
,
W. F.
, and
Wang
,
H.
,
2020
, “
Effect of Material Anisotropy on Ultra-Precision Machining of Ti-6Al-4V Alloy Fabricated by Selective Laser Melting
,”
J. Alloys Compd.
,
848
, p.
156457
.
24.
Issariyapat
,
A.
,
Visuttipitukul
,
P.
,
Umeda
,
J.
, and
Kondoh
,
K.
,
2020
, “
Refined Grain Formation Behavior and Strengthening Mechanism of α-Titanium With Nitrogen Fabricated by Selective Laser Melting
,”
Addit. Manuf.
,
36
, p.
101537
.
25.
Zhang
,
P.
,
Zhang
,
D. Z.
,
Peng
,
D.
,
Li
,
Z.
, and
Mao
,
Z.
,
2018
, “
Rolling Contact Fatigue Performance Evaluation of Ti–6Al–4 V Parts Processed by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9
), pp.
3533
3543
.
26.
Soltani
,
N.
,
Jafari Nodooshan
,
H. R.
,
Bahrami
,
A.
,
Pech-Canul
,
M. I.
,
Liu
,
W.
, and
Wu
,
G.
,
2014
, “
Effect of Hot Extrusion on Wear Properties of Al–15wt% Mg2Si In Situ Metal Matrix Composites
,”
Mater. Des.
,
53
, pp.
774
781
.
27.
Thasleem
,
P.
,
Kumar
,
D.
,
Joy
,
M. L.
, and
Kuriachen
,
B.
,
2022
, “
Effect of Heat Treatment and Electric Discharge Alloying on the Lubricated Tribology of Al–Si Alloy Fabricated by Selective Laser Melting
,”
Wear
,
494–495
, p.
204244
.
28.
Zhang
,
Q.
,
Ding
,
H.
,
Zhou
,
G.
,
Guo
,
X.
,
Zhang
,
M.
,
Li
,
N.
,
Wu
,
H.
, and
Xia
,
M.
,
2019
, “
Dry Sliding Wear Behavior of a Selected Titanium Alloy Against Counterface Steel of Different Hardness Levels
,”
Metall. Mater. Trans. A
,
50
(
1
), pp.
220
233
.
29.
Deaquino-Lara
,
R.
,
Soltani
,
N.
,
Bahrami
,
A.
,
Gutiérrez-Castañeda
,
E.
,
García-Sánchez
,
E.
, and
Hernandez-Rodríguez
,
M. A. L.
,
2015
, “
Tribological Characterization of Al7075–Graphite Composites Fabricated by Mechanical Alloying and Hot Extrusion
,”
Mater. Des.
,
67
, pp.
224
231
.
30.
Attar
,
H.
,
Bermingham
,
M. J.
,
Ehtemam-Haghighi
,
S.
,
Dehghan-Manshadi
,
A.
,
Kent
,
D.
, and
Dargusch
,
M. S.
,
2019
, “
Evaluation of the Mechanical and Wear Properties of Titanium Produced by Three Different Additive Manufacturing Methods for Biomedical Application
,”
Mater. Sci. Eng. A
,
760
, pp.
339
345
.
31.
Ming
,
W.
,
Chen
,
J.
,
An
,
Q.
, and
Chen
,
M.
,
2019
, “
Dynamic Mechanical Properties and Machinability Characteristics of Selective Laser Melted and Forged Ti6Al4V
,”
J. Mater. Process. Technol.
,
271
, pp.
284
292
.
32.
Jackson
,
M. J.
,
Whitfield
,
M.
,
Robinson
,
G. M.
,
Morrell
,
J.
, and
Davim
,
J. P.
,
2013
, “Tribology of Machining,”
Tribology in Manufacturing Technology
,
J. P.
Davim
, ed.,
Springer
,
Berlin/Heidelberg
, pp.
67
101
.
33.
Gaitonde
,
V. N.
,
Karnik
,
S. R.
, and
Davim
,
J. P.
,
2009
, “
Multiperformance Optimization in Turning of Free-Machining Steel Using Taguchi Method and Utility Concept
,”
J. Mater. Eng. Perform.
,
18
(
3
), pp.
231
236
.
You do not currently have access to this content.