Abstract

Lubrication characteristics can greatly affect the service performances of ball bearings. To further clarify the variation law of oil–air distribution in bearing cavity, a new simulation method combining the dynamic and computational fluid dynamics (CFD) models is presented. The relative motion between the ball and the cage caused by the cage clearance is obtained by the dynamic model. The coupling model uses the multi-reference frame (MRF) method and local remeshing approach (LRA) to describe the motion of each bearing component. The oil–air two-phase (OATP) flow is described through the volume of fluid (VOF) numerical model. Note that the lubricating oil content in the bearing cavity decreases significantly with the increment of rotation speed. There is a sudden change of pressure at the contact area between the ball and inner raceway. The relative motion of ball caused by the cage clearance has a certain effect on the local lubrication; however, it has little effect on the overall lubrication characteristics.

References

1.
Kong
,
X. D.
,
Yao
,
J.
,
Yu
,
B.
,
Ai
,
C.
, and
Song
,
Y.
,
2012
, “
Summary of Oil–Air Lubrication System Development
,”
Lubr. Eng.
,
37
(
6
), pp.
91
95
.
2.
Kumar
,
S.
,
Kumar
,
V.
, and
Singh
,
A. K.
,
2020
, “
Influence of Lubricants on the Performance of Journal Bearings—A Review
,”
Tribol. Mater. Surf. Interfaces
,
14
(
2
), pp.
67
78
.
3.
Yan
,
K.
,
Dong
,
L.
,
Zheng
,
J. H.
,
Li
,
B.
,
Wang
,
D.
, and
Sun
,
Y.
,
2018
, “
Flow Performance Analysis of Different Air Supply Methods for High Speed and Low Friction Ball Bearing
,”
Tribol. Int.
,
121
, pp.
94
107
.
4.
Peterson
,
W.
,
Russell
,
T.
,
Sadeghi
,
F.
,
Berhan
,
M. T.
,
Stacke
,
L.-E.
, and
Ståhl
,
J.
,
2021
, “
A CFD Investigation of Lubricant Flow in Deep Groove Ball Bearings
,”
Tribol. Int.
,
154
, p.
106735
.
5.
Maccioni
,
L.
, and
Concli
,
F.
,
2020
, “
Computational Fluid Dynamics Applied to Lubricated Mechanical Components: Review of the Approaches to Simulate Gears, Bearings, and Pumps
,”
Appl. Sci. Basel
,
10
(
24
), pp.
1
29
.
6.
Harris
,
T. A.
,
Barnsby
,
R. M.
, and
Kotzalas
,
M. N.
,
2001
, “
A Method to Calculate Frictional Effects in Oil-Lubricated Ball Bearings
,”
Tribol. Trans.
,
44
(
4
), pp.
704
708
.
7.
Oh
,
I. S.
,
Kim
,
D.
,
Hong
,
S. W.
, and
Kim
,
K.
,
2013
, “
Three-Dimensional Air Flow Patterns Within a Rotating Ball Bearing
,”
J. Comput. Theor. Nanosci.
,
19
(
8
), pp.
2180
2183
.
8.
Zhai
,
Q.
,
Yan
,
K.
,
Zhang
,
Y. Y.
,
Zhu
,
Y.-S.
, and
Wang
,
Y.-T.
,
2015
, “
Air Flow Patterns and Noise Analysis Inside High Speed Angular Contact Ball Bearings
,”
J. Cent. South Univ.
,
22
(
9
), pp.
3358
3366
.
9.
Ashmore
,
D. R.
,
Williams
,
E. J.
, and
McWilliam
,
S.
,
2003
, “
Hydrodynamic Support and Dynamic Response for an Inner-Piloted Bearing Cage
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
217
(
1
), pp.
19
28
.
10.
Li
,
X. X.
,
Yan
,
K.
,
Ge
,
L. F.
,
Zhu
,
Y. S.
, and
Hong
,
J.
,
2019
, “
Research on Flow Field Characteristics of Oil Injection Lubrication for High-Speed Ball Bearings
,”
J. Xi’an Jiaotong Univ.
,
53
(
12
), pp.
17
24
.
11.
Adeniyi
,
A. A.
,
Morvan
,
H. P.
, and
Simmons
,
K. A.
,
2015
A Multiphase Computational Study of Oil–Air Flow Within the Bearing Sector of Aeroengines
,”
Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Volume 5C: Heat Transfer
,
Montreal, Quebec
,
June 15–19
, p.
V05CT15A024
,
ASME
.
12.
Wu
,
W.
,
Hu
,
C. H.
,
Hu
,
J. B.
,
Yuan
,
S.
, and
Zhang
,
R.
,
2017
, “
Jet Cooling Characteristics for Ball Bearings Using the VOF Multiphase Model
,”
Int. J. Therm. Sci.
,
160
, pp.
150
158
.
13.
Wu
,
W.
,
Hu
,
C. H.
,
Hu
,
J. B.
, and
Yuan
,
S.
,
2016
, “
Jet Cooling for Rolling Bearings: Flow Visualization Temperature Distribution
,”
Appl. Therm. Eng.
,
105
, pp.
217
224
.
14.
Wu
,
W.
,
Hu
,
J.
,
Yuan
,
S.
, and
Hu
,
C.
,
2016
, “
Numerical and Experimental Investigation of the Stratified Air–Oil Flow Inside Ball Bearings
,”
Int. J. Heat Mass Transfer
,
103
, pp.
619
626
.
15.
Guo
,
K.
,
Yuan
,
S. H.
, and
Shao
,
Z. T.
,
2012
, “
Study on Oil–Air Two-Phase Flow Inside the High-Speed Bearing Cavity With Jet Lubrication
,”
Trans. Beijing Inst. Technol.
,
32
(
10
), pp.
1022
1025+1041
.
16.
Liu
,
J.
,
Ni
,
H. T.
,
Xu
,
Z. D.
, and
Pan
,
G.
,
2021
, “
A Simulation Analysis for Lubricating Characteristics of an Oil-Jet Lubricated Ball Bearing
,”
Simul. Model. Pract. Theory
,
113
, pp.
1
14
.
17.
Liu
,
J.
, and
Xu
,
Z. D.
,
2022
, “
A Simulation Investigation of Lubricating Characteristics for a Cylindrical Roller Bearing of a High-Power Gearbox
,”
Tribol. Int.
,
167
, p.
107373
.
18.
Deng
,
S.
,
Zhao
,
G. Q.
,
Qian
,
D. S.
,
Jiang
,
S.
, and
Hua
,
L.
,
2022
, “
Investigation of Oil–Air Flow and Temperature for High-Speed Ball Bearings by Combining Nonlinear Dynamic and Computational Fluid Dynamics Models
,”
ASME J. Tribol.
,
144
(
7
), p.
071204
.
19.
Liang
,
H.
,
Guo
,
D.
,
Ma
,
L. R.
, and
Luo
,
J.
,
2015
, “
Experimental Investigation of Centrifugal Effects on Lubricant Replenishment in the Starved Regime at High Speeds
,”
Tribol. Lett.
,
59
(
1
), p.
3
.
20.
Russell
,
T.
, and
Sadeghi
,
F.
,
2022
, “
The Effects of Lubricant Starvation on Ball Bearing Cage Pocket Friction
,”
Tribol. Int.
,
173
, p.
107630
.
21.
Arya
,
U.
,
Sadeghi
,
F.
,
Conley
,
B.
,
Russell
,
T.
,
Peterson
,
W.
, and
Meinel
,
A.
,
2022
, “
Experimental Investigation of Cage Dynamics and Ball-Cage Contact Forces in an Angular Contact Ball Bearing
,”
Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol.
,
236
(
12
), pp.
2522
2534
.
22.
Petersen
,
D.
,
Howard
,
C.
,
Sawalhi
,
N.
,
Moazen Ahmadi
,
A.
, and
Singh
,
S.
,
2015
, “
Analysis of Bearing Stiffness Variations, Contact Forces and Vibrations in Radially Loaded Double Row Rolling Element Bearings With Raceway Defects
,”
Mech. Syst. Signal Process
,
50–51
, pp.
139
160
.
23.
Liu
,
J.
,
Xu
,
Z. D.
, and
An
,
Y. C.
,
2023
, “
An Analysis of the Load Distribution Characteristics of a Cylindrical Roller Bearing Including the Component Deformation and Waviness
,”
ASME J. Tribol.
,
145
(
2
), p.
021201
.
24.
Yang
,
Z. H.
,
Yu
,
T. X.
,
Zhang
,
Y. G.
, and
Sun
,
Z.
,
2015
, “
Influence of Cage Clearance on the Heating Characteristics of High-Speed Ball Bearings
,”
Tribol. Int.
,
105
, pp.
125
134
.
25.
Liu
,
J.
,
Wang
,
L. F.
, and
Shi
,
Z. F.
,
2022
, “
Dynamic Modelling of the Defect Extension and Appearance in a Cylindrical Roller Bearing
,”
Mech. Syst. Signal Process
,
173
(
3
), p.
109040
.
26.
Shi
,
Z. F.
,
Liu
,
J.
,
Li
,
H. W.
,
Zhang
,
Q.
, and
Xiao
,
G.
,
2022
, “
Dynamic Simulation of a Planet Roller Bearing Considering the Cage Bridge Crack
,”
Eng. Fail. Anal.
,
131
, p.
105849
.
27.
Chen
,
H. B.
,
Liang
,
H.
,
Wang
,
W. Z.
, and
Zhang
,
S.
,
2022
, “
Investigation on the Oil Transfer Behaviors and the Air–Oil Interfacial Flow Patterns in a Ball Bearing Under Different Capillary Conditions
,”
Friction
,
11
(
2)
, pp.
228
245
.
28.
Liang
,
H.
,
Zhang
,
Y.
, and
Wang
,
W. Z.
,
2021
, “
Influence of the Cage on the Migration and Distribution of Lubricating Oil Inside a Ball Bearing
,”
Friction
,
10
(
7
), pp.
1035
1045
.
29.
Chen
,
H. B.
,
Wang
,
W. Z.
,
Liang
,
H.
, and
Zhao
,
Z.
,
2021
, “
Patterns of Interfacial Flow Around a Lubricated Rolling Point Contact Region
,”
Phys. Fluids
,
33
(
10
), p.
102118
.
30.
Chen
,
H. B.
,
Wang
,
W. Z.
,
Zhao
,
Z. Q.
, and
Liang
,
H.
,
2022
, “
Evolution and Flow Maps of the Oil Layer in Successive Rolling Point Contact Systems: Bearing as a Case
,”
Phys. Fluids
,
34
(
3
), p.
032110
.
31.
Zhai
,
Q.
,
Zhu
,
Y. S.
,
Yan
,
K.
,
Wang
,
N.
,
Liu
,
C.
, and
Wang
,
D. F.
,
2014
, “
Numerical Investigation of Two-Phase Flow for the Oil–Air Lubrication Inside an Angular Contact Ball Bearing
,”
J. Xi’an Jiaotong Univ.
,
48
(
6
), pp.
86
90
.
32.
Yin
,
X.
,
Zarikos
,
I.
,
Karadimitriou
,
N. K.
,
Raoof
,
A.
, and
Hassanizadeh
,
S. M.
,
2018
, “
Direct Simulations of Two-Phase Flow Experiments of Different Geometry Complexities Using Volume-of-Fluid (VOF) Method
,”
Chem. Eng. Sci.
,
195
, pp.
820
827
.
33.
Shi
,
Z. F.
, and
Liu
,
J.
,
2020
, “
An Improved Planar Dynamic Model for Vibration Analysis of a Cylindrical Roller Bearing
,”
Mech. Mach. Theory
,
153
, pp.
1
14
.
You do not currently have access to this content.