Abstract

In order to accurately obtain the dynamic characteristics of double involute gears (DIGs), according to the characteristics of tooth profile engagement, a tribo-dynamic model of DIGs with multiphysics coupling characteristics is proposed by integrating the thermal elastohydrodynamic lubrication (TEHL) model, the temperature field analysis model and the dynamic model. The influence of different factors on its dynamic behaviors and the difference in dynamic characteristics between DIGs and common involute gears (CIGs) are comparatively analyzed. The results show that the thermal effect and tooth friction can intensify the dynamic response of the gear transmission. The variation of rotational velocity and torque has a significant impact on the dynamic behaviors of DIGs, the change of tooth waist order parameters have little effect on its dynamic characteristics, and the dynamic characteristics between DIGs and CIGs exist difference, but the difference is not obvious. Additionally, the theoretical model is verified through experiments.

References

1.
Luo
,
B.
, and
Li
,
W.
,
2019
, “
Experiment Study on Thermal Dynamic Characteristics of Gear Transmission System
,”
Measurement
,
136
, pp.
154
162
.
2.
Hu
,
B.
,
Zhou
,
C.
,
Wang
,
H.
, and
Chen
,
S.
,
2021
, “
Nonlinear Tribo-Dynamic Model and Experimental Verification of a Spur Gear Drive Under Loss-of-Lubrication Condition
,”
Mech. Signal Process.
,
153
, p.
107509
.
3.
Li
,
Z.
,
Zhu
,
C.
,
Liu
,
H.
, and
Gu
,
Z.
,
2020
, “
Mesh Stiffness and Nonlinear Dynamic Response of a Spur Gear Pair Considering Tribo-Dynamic Effect
,”
Mech. Mach. Theory
,
153
, p.
103989
.
4.
Liao
,
Y. H.
,
Qin
,
D. T.
, and
Liu
,
C. Z.
,
2015
, “
Dynamic Characteristics of Two-Stage Split Herringbone Gear Trains Considering the Randomness of Internal Excitations
,”
J. Vib. Shock
,
34
(
1
), pp.
206
212
.
5.
Zhou
,
C. J.
, and
Xiao
,
Z. L.
,
2018
, “
Stiffness and Damping Models for the Oil Film in Line Contact Elastohydrodynamic Lubrication and Applications in the Gear Drive
,”
Appl. Math. Model.
,
61
, pp.
634
649
.
6.
Ziegltrum
,
A.
,
Lohner
,
T.
, and
Stahl
,
K.
,
2017
, “
TEHL Simulation on the Influence of Lubricants on Load-Dependent Gears Losses
,”
Tribol. Int.
,
113
, pp.
252
261
.
7.
Cao
,
W.
,
Pu
,
W.
,
Wang
,
J.
, and
Xiao
,
K.
,
2018
, “
Effect of Contact Path on the Mixed Lubrication Performance, Friction and Contact Fatigue in Spiral Bevel Gears
,”
Tribol. Int.
,
123
, pp.
359
371
.
8.
Shi
,
X.
,
Sun
,
W.
,
Lu
,
X.
,
Ma
,
X.
,
Zhu
,
D.
,
Zhao
,
B.
, and
He
,
T.
,
2019
, “
Three-Dimensional Mixed Lubrication Analysis of Spur Gears With Machined Roughness
,”
Tribol. Int.
,
140
, p.
105864
.
9.
Wang
,
H. B.
,
Zhou
,
C. J.
,
Lei
,
Y. Y.
, and
Liu
,
Z.
,
2019
, “
An Adhesive Wear Model for Helical Gears in Line-Contact Mixed Elastohydrodynamic Lubrication
,”
Wear
,
426–427
, pp.
896
909
.
10.
Xiao
,
Z. L.
,
Zhou
,
C. J.
,
Chen
,
S. Y.
, and
Li
,
Z.
,
2019
, “
Effects of Oil Film Stiffness and Damping on Spur Gear Dynamics
,”
Nonlinear Dyn.
,
96
(
1
), pp.
145
159
.
11.
Wang
,
S. M.
,
Shen
,
Y. W.
, and
Dong
,
H. J.
,
2002
, “
Chaos and Bifurcation Analysis of a Spur Gear Pair With Combined Friction and Clearance
,”
Chin. J. Mech. Eng.
,
38
(
9
), pp.
8
11
.
12.
Yuan
,
S. H.
,
Dong
,
H. L.
, and
Li
,
X. Y.
,
2012
, “
Analysis of Lubrication Performance for Involute Gear Based on Dynamic Loading Theory
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121004
.
13.
Yuan
,
S. H.
,
Dong
,
H. L.
,
Hu
,
J. B.
, and
Li
,
X.
,
2012
, “
Dynamic Loading Analysis of Involute Gears Considering Lubrication Performance
,”
J. Mech. Eng.
,
48
(
9
), pp.
10
16
.
14.
He
,
S.
,
Gunda
,
R.
, and
Singh
,
R.
,
2007
, “
Inclusion of Sliding Friction in Contact Dynamic Model for Helical Gears
,”
Trans. ASME
,
48
(
129
), pp.
48
57
.
15.
Fernandez
,
A.
,
Iglesias
,
M.
, and
Juan
,
A.
,
2014
, “
Gear Transmission Dynamic: Effect of Tooth Profile Deviations and Support Flexibility
,”
Appl. Acoust.
,
77
, pp.
138
149
.
16.
Zou
,
Y. J.
,
Pang
,
F.
, and
Fan
,
Z. M.
,
2019
, “
Coupling Research on Dynamical Behavior and Elastohydrodynamic Lubrication Property of Helical Gear
,”
J. Mech. Eng.
,
55
(
3
), pp.
109
119
.
17.
Ouyang
,
T.
,
Huang
,
H.
,
Zhang
,
N.
,
Mo
,
C.
, and
Chen
,
N.
,
2017
, “
A Model to Predict Tribo-Dynamic Performance of a Spur Gear Pair
,”
Tribol. Int.
,
116
, pp.
449
459
.
18.
Ouyang
,
T.
,
Huang
,
G.
,
Chen
,
J.
,
Gao
,
B.
, and
Chen
,
N.
,
2019
, “
Investigation of Lubricating and Dynamic Performances for High-Speed Spur Gear Based on Tribo-Dynamic Theory
,”
Tribol. Int.
,
136
, pp.
431
431
.
19.
Shu
,
R.
,
Wei
,
J.
,
Tan
,
R.
,
Wu
,
X.
, and
Fu
,
B.
,
2021
, “
Investigation of Dynamic and Synchronization Properties of a Multi-Motor Driving System: Theoretical Analysis and Experiment
,”
Mech. Syst. Signal Process
,
153
, p.
107496
.
20.
Taburdagitan
,
M.
, and
Akkok
,
M.
,
2006
, “
Determination of Surface Temperature Rise With Thermo-Elastic Analysis of Spur Gears
,”
Wear
,
261
(
5–6
), pp.
656
665
.
21.
Gan
,
L.
,
Pu
,
W.
, and
Xiao
,
K.
,
2019
, “
Analysis of Spiral Bevel Gears Scuffing Load Capacity in Mixed EHL Regime
,”
Tribology
,
39
(
4
), pp.
426
433
.
22.
Li
,
W.
,
Pang
,
A. Q.
, and
Hao
,
W.
,
2019
, “
Effects of the Helix Angle, the Friction Coefficient and Mechanical Errors on Unsteady-State Temperature Field of Helical Gear and Thermal Sensitivity Analysis
,”
Int. J. Heat Mass Transfer
,
44
, p.
118669
.
23.
Gou
,
X. F.
,
Qi
,
C. J.
, and
Zhu
,
L. Y.
,
2015
, “
Nonlinear Dynamic Modelling and Analysis of Two-Stage Gear System With Tooth Contact Surface Temperature
,”
J. Vib. Eng.
,
28
(
5
), pp.
762
769
.
24.
Fan
,
Z. M.
, and
Zhang
,
G. H.
,
2002
, “
Analysis of Meshing Characteristics of Step Type Double Involute Gear
,”
Chin. J. Mech. Eng.
,
38
(
9
), pp.
73
76
.
25.
Fan
,
Z. M.
,
Zhang
,
X. W.
, and
Ma
,
Y. D.
,
2019
, “
Contact Stress of Double Involute Gear Based on Fractal Theory
,”
Tribology
,
39
(
2
), pp.
251
257
.
26.
Fan
,
Z. M.
,
Wang
,
M. K.
, and
Yin
,
Z. M.
,
2020
, “
Film Stiffness of Double Involute Gears Transmission
,”
Tribology
,
40
(
3
), pp.
280
288
.
27.
Fan
,
Z.
,
Zhou
,
W.
,
Wang
,
R.
, and
Wang
,
N.
,
2016
, “
Effect of Tooth Waist Order Parameters of Double Involute Gears on Lubrication Performance of Gear Drive
,”
Ind. Lubr. Tribol.
,
68
(
6
), pp.
647
657
.
28.
Yin
,
Z. M.
,
Fan
,
Z. M.
, and
Wang
,
M. K.
,
2020
, “
Thermal Elastohydrodynamic Lubrication Characteristics of Double Involute Gears at the Graded Position of Tooth Waist
,”
Tribol. Int.
,
144
, p.
106028
.
29.
Karpat
,
F.
,
Ekwaro-Osire
,
S.
,
Cavdar
,
K.
, and
Babalik
,
F. C.
,
2008
, “
Dynamic Analysis of Involute Spur Gears With Asymmetric Teeth
,”
Int. J. Mech. Sci.
,
50
(
12
), pp.
1598
1610
.
30.
Yang
,
P.
, and
Wen
,
S. Z.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydro-Dynamic Lubrication
,”
ASME J. Tribol.
,
112
(
4
), pp.
631
636
.
31.
Liu
,
H.
,
Zhu
,
C.
,
Wang
,
Z.
,
Zhou
,
Y.
and
Zhang
,
Y.
,
2017
, “
A Theoretical Tribological Comparison Between Soft and Hard Coatings of Spur Gear Pairs
,”
ASME J. Tribol.
,
139
(
3
), p.
031503
.
32.
Huan
,
Y.
, and
Yang
,
P. R.
,
2009
, “
The Influence of Spinning on Thermal EHL in Elliptical Contacts
,”
Tribology
,
29
(
6
), p.
616
.
33.
Roelands
,
C. J. A.
,
Vlugter
,
J. C.
, and
Waterman
,
H. I.
,
1963
, “
The Viscosity-Temperature-Pressure Relationship of Lubricating Oils and Its Correlation With Chemical Constitution
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
601
607
.
34.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elastohydrodynamic Lubrication, the Fundamentals of Roller and Gear Lubrication
,
Pergamon Press
,
Oxford
.
35.
Yang
,
P.
, and
Yang
,
P. R.
,
2007
, “
Analysis on the Thermal Elastohydrodynamic Lubrication of Tapered Rollers in Opposite Orientation
,”
Tribol. Int.
,
40
(
10–12
), pp.
1627
1637
.
36.
Liu
,
X. L.
, and
Yang
,
P. R.
,
2002
, “
Analysis of the Thermal Elastohydrodynamic Lubrication of a Finite Line Contact
,”
Tribol. Int.
,
35
(
3
), pp.
137
144
.
37.
Yang
,
P.
, and
Yang
,
P. R.
,
2006
, “
Theory of Thermal Elastohydrodynamic Lubrication for Helical Gears
,”
Chin. J. Mech. Eng.
,
42
(
10
), pp.
43
48
.
38.
Wang
,
Y. Q.
,
Yi
,
X. J.
, and
Yang
,
P. R.
,
2007
, “
Transient Thermal Micro-Elastohydrodynamic Lubrication Analysis of an Involute Spur Gear
,”
Chin. J. Mech. Eng.
,
43
(
11
), pp.
142
148
.
39.
Wang
,
Y.
,
Li
,
H.
,
Tong
,
J.
, and
Yang
,
P.
,
2004
, “
Transient Thermoelastohydrodynamic Lubrication Analysis of an Involute Spur Gear
,”
Tribol. Int.
,
37
(
10
), pp.
773
782
.
40.
Yang
,
D. C. H.
, and
Sun
,
Z. S.
,
1985
, “
A Rotary Model for Spur Gear Dynamics
,”
ASME J. Mech. Des.
,
107
(
4
), pp.
529
535
.
41.
Luo
,
B.
,
Li
,
W.
, and
Li
,
L. S.
,
2017
, “
Research on Thermal Stiffness of Gear Based on Thermo-Elastic Coupling
,”
J. Cent. South Univ.
,
48
(
12
), pp.
3209
3215
.
42.
Yin
,
Z. M.
,
Jiang
,
F.
, and
Fan
,
Z. M.
,
2021
, “
Research on Temperature Field of Double Involute Gear Based on TEHL
,”
Tribology
,
14
(
2
), pp.
268
279
.
43.
Luo
,
B.
, and
Li
,
W.
,
2020
, “
Investigation on the Influence of Heat on the Dynamic Characteristics of a Gear Transmission System
,”
Eng. Fail. Anal.
,
116
, p.
104724
.
44.
Yin
,
Z. M.
,
Fan
,
Z. M.
, and
Jiang
,
F.
,
2021
, “
Oil Film Stiffness of Double Involute Gears Based on Thermal EHL Theory
,”
Chin. J. Mech. Eng.
,
34
(
1
), p.
60
.
45.
Jian
,
G. X.
,
Wang
,
Y. Q.
, and
Yu
,
X.
,
2021
, “
Coupling on Ferrofluid Lubrication and Dynamics of Gear System
,”
Tribology
,
41
(
3
), pp.
325
333
.
46.
He
,
S.
, and
Singh
,
R.
,
2008
, “
Dynamic Transmission Error Prediction of Helical Gear Pair Under Sliding Friction Using Floquet Theory
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052603
.
47.
Siyu
,
C.
,
Jinyuan
,
T.
,
Caiwang
,
L.
and
Qibo
,
W.
,
2011
, “
Nonlinear Dynamic Characteristics of Geared Rotor Bearing Systems With Dynamic Backlash and Friction
,”
Mech. Mach. Theory
,
46
(
4
), pp.
466
478
.
You do not currently have access to this content.