Abstract

Since the millennium, incremental breakthroughs in aerospace have attracted widespread attention from countries around the world on deep space exploration. Technological innovations in ceramic and superhard materials have also played a key role in deep space exploration. Inspired by this, a tribological ball-disk experiment of polycrystalline cubic boron nitride (PcBN) sliding against aluminum oxide (Al2O3) was implemented in air and vacuum conditions, in order to evaluate the friction and wear properties of PcBN based on drilling in the deep space environment. The results prove that the coefficient of friction (CoF) is interrelated with load and wear conditions, where CoFs gradually decrease with load growth in both air and vacuum. When the loads keep increasing, however, the wear mechanisms finally change under the high Hertz contact stress and lead to the CoF lift. Detailed characterizations were made to verify the tribological behaviors of the microscopic surface and chemical composition. Finally, by analyzing the surface topographies and chemical residues, it is certain that the wear mechanisms change due to the high Hertz contact stress. As a result, abrasive wear and adhesive wear turn to furrow wear in air and three-body wear in vacuum. These results can influence actual work in deep space by reducing large stress loads to avoid the impact of severe vibrations on precision instruments during work and improving cutting removal efficiency by selecting the appropriate loading.

References

1.
Lawler
,
A.
,
Bagla
,
P.
,
Yimin
,
D.
,
Normile
,
D.
, and
Schilling
,
G.
,
2003
, “
The New Race to the Moon
,”
Science
,
300
(
5620
), pp.
724
727
.
2.
Ouyang
,
Z. Y.
,
2019
, “
Interpretation of the History of the First Human Trip to the Moon: The Introduction of Complete History of Project Apollo
,”
Sci. Educ. Mus.
,
5
(
5
), pp.
394
395
.
3.
Li
,
Q.
,
Gao
,
H.
,
Xie
,
L. L.
,
Tan
,
S. C.
, and
Duan
,
L. C.
,
2021
, “
Review of Research About Lunar Drilling Technology
,”
Drill. Eng.
,
48
(
1
), pp.
15
34
.
4.
Anttila
,
M.
,
2005
, “
Concept Evaluation of Mars Drilling and Sampling Instrument
,”
Ph.D. thesis
,
Laboratory of Space Technology, Helsinki University of Technology
,
Helsinki, Finland
.
5.
Magnani
,
P. G.
,
Re
,
E.
,
Senese
,
S.
,
Cherubini
,
G.
, and
Olivieri
,
A.
,
2006
, “
Different Drill Tool Concepts
,”
Acta Astronaut.
,
59
(
8–11
), pp.
1014
1019
.
6.
Liu
,
C.
,
Man
,
Z. Y.
,
Zhou
,
F. B.
,
Chen
,
K.
, and
Yu
,
H. Y.
,
2019
, “
The Wear and Friction Characters of Polycrystalline Diamond Under Wetting Conditions
,”
ASME J. Tribol.
,
141
(
2
), p.
021607
.
7.
Pitcher
,
C.
,
2006
, “
Advancing the Dual Reciprocating Drill Design for Efficient Planetary Subsurface Exploration
,”
Ph.D. thesis
,
University of Surrey
,
Surrey
.
8.
Zacny
,
K.
,
Paulsen
,
G.
,
Szczesiak
,
M.
,
Craft
,
J.
,
Chu
,
P.
,
McKay
,
C.
,
Glass
,
B.
, et al
,
2013
, “
Lunar Vader: Development and Testing of Lunar Drill in Vacuum Chamber and in Lunar Analog Site of Antarctica
,”
J. Aerosp. Eng.
,
26
(
1
), pp.
74
86
.
9.
Ohno
,
T.
,
Karasawa
,
H.
, and
Kobayashi
,
H.
,
2002
, “
Cost Reduction of Polycrystalline Diamond Compact Bits Through Improved Durability
,”
Geothermics
,
31
(
2
), pp.
247
263
.
10.
Grech
,
D. F.
,
Abela
,
S.
,
Attard
,
M.
, and
Sinagra
,
E.
,
2013
, “
Coating of Diamond Particles for Production of Metal Matrix Composites
,”
Surf. Eng.
,
29
(
3
), pp.
244
246
.
11.
Jaffar
,
A.
,
Birch
,
R.
,
Teasdale
,
P.
,
Hycalog
,
R.
, and
Ani
,
S. A.
,
2014
, “
New PDC Technology Significantly Improves Performance in Drilling Deep Khuff Wells for a Major Operator in Abu Dhabi
,”
Middle East Drilling Technology Conference & Exhibition, Society of Petroleum Engineers
,
Dubai, United Arab Emirates
,
Sept. 12–14
.
12.
Li
,
J. S.
,
Yue
,
W.
, and
Wang
,
C. B.
,
2016
, “
Microstructures and Thermal Damage Mechanisms of Sintered Polycrystalline Diamond Compact Annealing Under Ambient Air and Vacuum Conditions
,”
Int. J. Refract. Met. Hard Mater.
,
54
(
19
), pp.
138
147
.
13.
Motorcu
,
A. R.
,
Isik
,
Y.
,
Kus
,
A.
, and
Cakir
,
M. C.
,
2016
, “
Analysis of the Cutting Temperature and Surface Roughness During the Orthogonal Machining of AISI 4140 Alloy Steel via the Taguchi Method
,”
Mater. Tehnol.
,
50
(
3
), pp.
343
351
.
14.
Liu
,
Y. J.
,
He
,
D. W.
,
Wang
,
P.
,
Tang
,
M. J.
,
Xu
,
C.
,
Wang
,
W. D.
,
Liu
,
J.
,
Liu
,
G. D.
, and
Kou
,
Z. L.
,
2017
, “
Syntheses and Studies of Superhard Composites Under High Pressure
,”
Acta. Phys. Sin.
,
66
(
3
), p.
038103
.
15.
Collinson
,
D. W.
,
1991
,
Lunar Sourcebook: A User’s Guide to the Moon
,
Cambridge University Press, Cambridge
,
UK
.
16.
Rao
,
Z. W.
,
Xiao
,
G. D.
,
Zhao
,
B.
,
Zhu
,
Y. J.
, and
Ding
,
W. F.
,
2021
, “
Effect of Wear Behaviour of Single Mono- and Poly-Crystalline cBN Grains on the Grinding Performance of Inconel 718
,”
Ceram. Int.
,
47
(
12
), pp.
17049
17056
.
17.
Zhao
,
B.
,
Ding
,
W. F.
,
Xiao
,
G. D.
,
Zhao
,
J. S.
, and
Li
,
Z.
,
2021
, “
Effects of Open Pores on Grinding Performance of Porous Metal-Bonded Aggregated cBN Wheels During Grinding Ti–6Al–4 V Alloys
,”
Ceram. Int.
,
47
(
22
), pp.
31311
31318
.
18.
Dogra
,
M.
,
Sharma
,
V. S.
,
Sachdeva
,
A.
,
Suri
,
N. M.
, and
Dureja
,
J. S.
,
2010
, “
Tool Wear, Chip Formation and Workpiece Surface Issues in CBN Hard Turning: A Review
,”
Int. J. Precis. Eng. Manuf.
,
11
(
2
), pp.
341
358
.
19.
Watanabe
,
S.
,
Miyake
,
S.
, and
Murakawa
,
M.
,
1995
, “
Tribological Behavior of Cubic Boron Nitride Film Sliding Against Diamond
,”
ASME J. Tribol.
,
117
(
4
), pp.
629
633
.
20.
Monteiro
,
S. N.
,
Skury
,
A. L. D.
,
Azevedo
,
M. G.
, and
Bobrovnitvhii
,
G. S.
,
2013
, “
Cubic Boron Nitride Competing With Diamond as a Superhard Engineering Material—An Overview
,”
J. Mater. Res. Technol.
,
2
(
1
), pp.
68
74
.
21.
Aydin
,
F.
, and
Turan
,
M. E.
,
2020
, “
The Effect of Boron Nitride on Tribological Behavior of Mg Matrix Composite at Room and Elevated Temperatures
,”
ASME J. Tribol.
,
142
(
1
), p.
011601
.
22.
Ren
,
X. J.
,
Yang
,
Q. X.
,
James
,
R. D.
, and
Wang
,
L.
,
2004
, “
Cutting Temperatures in Hard Turning Chromium Hardfacings With PCBN Tooling
,”
J. Mater. Process. Tech.
,
147
(
1
), pp.
38
44
.
23.
Yu
,
Z. M.
,
Inagawa
,
K.
, and
Jin
,
Z. J.
,
1994
, “
Tribological Properties of c-BN Coatings in Vacuum at High Temperature
,”
Surf. Coat. Tech.
,
70
(
1
), pp.
147
150
.
24.
Hua
,
H. Y.
,
2001
, “
Foreign PCBN Tool Application Technology
,”
Mach. Manuf. Eng.
,
3
(
12
), pp.
24
26
.
25.
Bushlya
,
V.
,
Bjerke
,
A.
,
Turkevich
,
V. Z.
,
Lenrick
,
F.
,
Petrusha
,
I. A.
,
Cherednichenko
,
K. A.
, and
Ståhla
,
J. E.
,
2019
, “
On Chemical and Diffusional Interactions Between PCBN and Superalloy Inconel 718: Imitational Experiments
,”
J. Eur. Ceram. Soc.
,
39
(
8
), pp.
2658
2665
.
26.
Li
,
L. B.
,
Wu
,
M. Y.
,
Liu
,
X. L.
,
Cheng
,
Y. N.
, and
Yu
,
Y. X.
,
2018
, “
Experimental Study of the Wear Behavior of PCBN Inserts During Cutting of GH4169 Superalloys Under High-Pressure Cooling
,”
Int. J. Adv. Manuf. Tech.
,
95
(
5–8
), pp.
1941
1951
.
27.
Sirtuli
,
L. J.
,
Boing
,
D.
, and
Schroeter
,
R. B.
,
2018
, “
Evaluation of Layer Adhered on PCBN Tools During Turning of AISI D2 Steel
,”
Int. J. Refract. Met. Hard Mater.
,
84
(
1
), p.
104977
.
28.
Abrao
,
A. M.
, and
Aspinwall
,
D. K.
,
1997
, “
Temperature Evaluation of Cutting Tools During Machining of Hardened Bearing Steel Using Polycrystalline Cubic Boron Nitride and Ceramic Cutting Tools
,”
Mater. Sci. Technol..
,
13
(
5
), pp.
445
450
.
29.
Tang
,
L. H.
,
Sun
,
Y. J.
,
Li
,
B. D.
,
Shen
,
J. C.
, and
Meng
,
G. L.
,
2019
, “
Wear Performance and Mechanisms of PCBN Tool in Dry Hard Turning of AISI D2 Hardened Steel
,”
Tribol. Int.
,
132
(
22
), pp.
228
236
.
30.
Sadik
,
M. I.
,
2012
, “
Wear Development and Cutting Forces on cBN Cutting Tool in Hard Part Turning of Different Hardened Steels
,”
Procedia CIRP
,
1
(
25
), pp.
232
237
.
31.
Liew
,
W. Y. H.
,
Ngoi
,
B. K. A.
, and
Lu
,
Y. G.
,
2003
, “
Wear Characteristics of PCBN Tools in the Ultra-Precision Machining of Stainless Steel at Low Speeds
,”
Wear
,
254
(
3
), pp.
265
277
.
32.
Huang
,
X.
,
Li
,
H.
,
Rao
,
Z.
, and
Ding
,
W.
,
2019
, “
Fracture Behavior and Self-Sharpening Mechanisms of Polycrystalline Cubic Boron Nitride in Grinding Based on Cohesive Element Method
,”
Chin. J. Aeronaut.
,
32
(
12
), pp.
2727
2742
.
33.
Cui
,
J. M.
,
Meng
,
D. Z.
,
Wu
,
Z.
,
Qin
,
W. B.
,
She
,
D. S.
,
Kang
,
J. J.
,
Zhang
,
R.
,
Wang
,
C. B.
, and
Yue
,
W.
,
2022
, “
Tribological Behaviors of Polycrystalline Cubic Boron Nitride Sliding Against Silicon Nitride in Air and Vacuum Conditions
,”
Ceram. Int.
,
48
(
1
), pp.
363
372
.
34.
Magnani
,
P.
,
Re
,
E.
,
Senese
,
S.
,
Cherubini
,
G.
, and
Olivieri
,
A.
,
2006
, “
Different Drill Tool Concepts
,”
Act. Astronaut.
,
59
(
8–11
), pp.
1014
1019
.
35.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
36.
Zhang
,
L. G.
,
Qi
,
H. M.
,
Li
,
G. T.
,
Wang
,
D. A.
,
Wang
,
T. M.
,
Wang
,
Q. H.
, and
Zhang
,
G.
,
2017
, “
Significantly Enhanced Wear Resistance of PEEK by Simply Filling With Modified Graphitic Carbon Nitride
,”
Mater. Des.
,
129
(
24
), pp.
192
200
.
37.
Meng
,
D. Z.
,
Zhao
,
Y. P.
,
Yue
,
W.
,
Wu
,
Z.
,
Cui
,
J. M.
,
Qin
,
W. B.
, and
Wang
,
C. B.
,
2021
, “
Thermal Effects on Tribological Behaviors of Polycrystalline Cubic Boron Nitride
,”
Ceram. Int.
,
47
(
5
), pp.
7117
7125
.
38.
Miki
,
H.
,
Yoshida
,
N.
,
Bando
,
K.
,
Takeno
,
T.
,
Abe
,
T.
, and
Takagi
,
T.
,
2008
, “
Atmosphere Dependence of the Frictional Wearing Properties of Partly-Polished Polycrystalline Diamonds
,”
Diam. Relat. Mater.
,
17
(
4–5
), pp.
868
872
.
39.
Bouchet
,
M. D. B.
,
Zilibotti
,
G.
,
Matta
,
C.
,
Righi
,
M. C.
,
Vandenbulcke
,
L.
,
Vacher
,
B.
, and
Martin
,
J.
,
2012
, “
Friction of Diamond in the Presence of Water Vapor and Hydrogen gas: Coupling Gas-Phase Lubrication and First-Principles Studies
,”
J. Phys. Chem. C.
,
116
(
12
), pp.
6966
6972
.
40.
Stachowiak
,
G.
, and
Batchelor
,
A. W.
,
2013
,
Engineering Tribology
,
Butterworth-Heinemann
,
Oxford, UK
.
You do not currently have access to this content.