Abstract

Surface skewness and kurtosis are two crucial topography property indexes that greatly influence the functional performance of the machined surface. This paper proposes a modified model of stress concentration factor (SCF), which integrates these two surface texture parameters with the well-known standard surface roughness parameters (Arola's model). The relative weight of positive and negative heights of the surface is considered to describe the influence of the shape of the peaks and valleys on the stress concentration of the surface profile for the first time, meanwhile, without losing the effect of the standard surface roughness parameters. The performance of the modified model is studied by comparing it with the other two models involving various aspects of the functional performance of machined surfaces, including fatigue life, wear resistance, fretting crack nucleation, and initiation behaviors, as well as the surface bearing capability. The results indicate that by accounting for the surface skewness and kurtosis parameters, the modified model is more suitable for evaluating the SCF of machined surfaces, appropriately describing the correlation between surface texture and fatigue life and achieving a good prediction of fatigue life compared with the experimental results.

References

1.
Ulutan
,
D.
, and
Ozel
,
T.
,
2011
, “
Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
3
), pp.
250
280
.
2.
Jawahir
,
I. S.
,
Brinksmeier
,
E.
,
M’Saoubi
,
R.
,
Aspinwall
,
D. K.
,
Outeiro
,
J. C.
,
Meyer
,
D.
,
Umbrello
,
D.
, and
Jayal
,
A. D.
,
2011
, “
Surface Integrity in Material Removal Processes: Recent Advances
,”
CIRP Ann.-Manuf. Technol.
,
60
(
2
), pp.
603
626
.
3.
Novovic
,
D.
,
Dewes
,
R. C.
,
Aspinwall
,
D. K.
,
Voice
,
W.
, and
Bowen
,
P.
,
2004
, “
The Effect of Machined Topography and Integrity on Fatigue Life
,”
Int. J. Mach. Tools Manuf.
,
44
(
2
), pp.
125
134
.
4.
la Monaca
,
A.
,
Murray
,
J. W.
,
Liao
,
Z.
,
Speidel
,
A.
,
Robles-Linares
,
J. A.
,
Axinte
,
D. A.
,
Hardy
,
M. C.
, and
Clare
,
A. T.
,
2021
, “
Surface Integrity in Metal Machining—Part II: Functional Performance
,”
Int. J. Mach. Tools Manuf.
,
164
, p.
103718
.
5.
Pawlus
,
P.
,
Reizer
,
R.
, and
Wieczorowski
,
M.
,
2021
, “
Functional Importance of Surface Texture Parameters
,”
Materials
,
14
(
18
), p.
5326
.
6.
He
,
C. L.
,
Zong
,
W. J.
, and
Zhang
,
J. J.
,
2018
, “
Influencing Factors and Theoretical Modeling Methods of Surface Roughness in Turning Process: State-of-the-Art
,”
Int. J. Mach. Tools Manuf.
,
129
, pp.
15
26
.
7.
Yang
,
D.
,
Liu
,
Z.
,
Xiao
,
X.
, and
Xie
,
F.
,
2018
, “
The Effects of Machining-Induced Surface Topography on Fatigue Performance of Titanium Alloy Ti-6Al-4 V
,”
Procedia CIRP
,
71
, pp.
27
30
.
8.
Cheng
,
Z.
,
Liao
,
R.
,
Lu
,
W.
, and
Wang
,
D.
,
2017
, “
Fatigue Notch Factors Prediction of Rough Specimen by the Theory of Critical Distance
,”
Int. J. Fatigue
,
104
, pp.
195
205
.
9.
Jones
,
R.
,
Michopoulos
,
J. G.
,
Iliopoulos
,
A. P.
,
Singh Raman
,
R. K.
,
Phan
,
N.
, and
Nguyen
,
T.
,
2018
, “
Representing Crack Growth in Additively Manufactured Ti-6Al-4 V
,”
Int. J. Fatigue
,
116
, pp.
610
622
.
10.
Balestra
,
S.
,
Costagliola
,
G.
,
Pegoraro
,
A.
,
Picollo
,
F.
,
Molinari
,
J.-F.
,
Pugno
,
N. M.
,
Vittone
,
E.
,
Bosia
,
F.
, and
Sin
,
A.
,
2022
, “
Experimental and Numerical Study of the Effect of Surface Patterning on the Frictional Properties of Polymer Surfaces
,”
ASME J. Tribol.
,
144
(
3
), p.
031704
.
11.
Duo
,
Y.
,
Jinyuan
,
T.
,
Wei
,
Z.
, and
Yuqin
,
W.
,
2022
, “
Study on Roughness Parameters Screening and Characterizing Surface Contact Performance Based on Sensitivity Analysis
,”
ASME J. Tribol.
,
144
(
4
), p.
041502
.
12.
Sklenak
,
S.
,
Mevissen
,
D.
,
Brimmers
,
J.
, and
Brecher
,
C.
,
2022
, “
Method for Calculating Plastic Deformation of High Resolution and Large Contact Area
,”
ASME J. Tribol.
,
144
(
1
), p.
011502
.
13.
Arola
,
D.
, and
Williams
,
C. L.
,
2002
, “
Estimating the Fatigue Stress Concentration Factor of Machined Surfaces
,”
Int. J. Fatigue
,
24
(
9
), pp.
923
930
.
14.
Suraratchai
,
M.
,
Limido
,
J.
,
Mabru
,
C.
, and
Chieragatti
,
R.
,
2008
, “
Modelling the Influence of Machined Surface Roughness on the Fatigue Life of Aluminium Alloy
,”
Int. J. Fatigue
,
30
(
12
), pp.
2119
2126
.
15.
Ås
,
S. K.
,
Skallerud
,
B.
,
Tveiten
,
B. W.
, and
Holme
,
B.
,
2005
, “
Fatigue Life Prediction of Machined Components Using Finite Element Analysis of Surface Topography
,”
Int. J. Fatigue
,
27
(
10-12
), pp.
1590
1596
.
16.
Peterson
,
R. E.
, and
Plunkett
,
R.
,
1975
, “
Stress Concentration Factors
,”
J. Appl. Mech.
,
42
(
1
), p.
248
.
17.
Peterson
,
R. E.
,
1974
,
Stress Concentration Factors: Charts and Relations Useful in Making Strength Calculations for Machine Parts and Structural Elements(Book)
,
Wiley-Interscience
,
New York
,
329
.
18.
Neuber
,
H.
,
1958
,
Kerbspannungslehre
,
Springer
,
Berlin/Heidelberg, Germany
.
19.
Arola
,
D.
, and
Ramulu
,
M.
,
1999
, “
An Examination of the Effects From Surface Texture on the Strength of Fiber Reinforced Plastics
,”
J. Compos. Mater.
,
33
(
2
), pp.
102
123
.
20.
Medina
,
H.
, and
Hinderliter
,
B.
,
2014
, “
The Stress Concentration Factor for Slightly Roughened Random Surfaces: Analytical Solution
,”
Int. J. Solids Struct.
,
51
(
10
), pp.
2012
2018
.
21.
Perez
,
I.
,
Madariaga
,
A.
,
Arrazola
,
P. J.
,
Cuesta
,
M.
, and
Soriano
,
D.
,
2021
, “
An Analytical Approach to Calculate Stress Concentration Factors of Machined Surfaces
,”
Int. J. Mech. Sci.
,
190
, p.
106040
.
22.
Zeng
,
Q.
,
Qin
,
Y.
,
Chang
,
W.
, and
Luo
,
X.
,
2018
, “
Correlating and Evaluating the Functionality-Related Properties With Surface Texture Parameters and Specific Characteristics of Machined Components
,”
Int. J. Mech. Sci.
,
149
, pp.
62
72
.
23.
Leach
,
R. K.
,
2010
, “Chapter 8—Surface Topography Characterization,”
Fundamental Principles of Engineering Nanometrology
,
R. K.
Leach
, ed.,
William Andrew Publishing
,
Oxford
, pp.
211
262
.
24.
Gadelmawla
,
E. S.
,
Koura
,
M. M.
,
Maksoud
,
T. M. A.
,
Elewa
,
I. M.
, and
Soliman
,
H. H.
,
2002
, “
Roughness Parameters
,”
J. Mater. Process Technol.
,
123
(
1
), pp.
133
145
.
25.
Kasarekar
,
A. T.
,
Sadeghi
,
F.
, and
Tseregounis
,
S.
,
2008
, “
Fretting Fatigue of Rough Surfaces
,”
Wear
,
264
(
7
), pp.
719
730
.
26.
Sedlaček
,
M.
,
Podgornik
,
B.
, and
Vižintin
,
J.
,
2009
, “
Influence of Surface Preparation on Roughness Parameters, Friction and Wear
,”
Wear
,
266
(
3
), pp.
482
487
.
27.
Sedlaček
,
M.
,
Podgornik
,
B.
, and
Vižintin
,
J.
,
2012
, “
Planning Surface Texturing for Reduced Friction in Lubricated Sliding Using Surface Roughness Parameters Skewness and Kurtosis
,”
P. I. Mech. Eng. J.-J. Eng.
,
226
(
8
), pp.
661
667
.
28.
Sedlaček
,
M.
,
Podgornik
,
B.
, and
Vižintin
,
J.
,
2012
, “
Correlation Between Standard Roughness Parameters Skewness and Kurtosis and Tribological Behaviour of Contact Surfaces
,”
Tribol. Int.
,
48
, pp.
102
112
.
29.
Wang
,
W.
,
Chen
,
H.
,
Hu
,
Y.
, and
Wang
,
H.
,
2006
, “
Effect of Surface Roughness Parameters on Mixed Lubrication Characteristics
,”
Tribol. Int.
,
39
(
6
), pp.
522
527
.
30.
Gu
,
C.
,
Meng
,
X.
,
Wang
,
S.
, and
Ding
,
X.
,
2019
, “
Research on Mixed Lubrication Problems of the Non-Gaussian Rough Textured Surface With the Influence of Stochastic Roughness in Consideration
,”
ASME J. Tribol.
,
141
(
12
), p.
121501
.
31.
Gu
,
H.
,
Jiao
,
L.
,
Yan
,
P.
,
Liang
,
J.
,
Qiu
,
T.
,
Liu
,
Z.
, and
Wang
,
X.
,
2021
, “
Effect of Machined Surface Texture on Fretting Crack Nucleation Under Radial Loading in Conformal Contact
,”
Tribol. Int.
,
153
, p.
106575
.
32.
Lee
,
S.
,
Rasoolian
,
B.
,
Silva
,
D. F.
,
Pegues
,
J. W.
, and
Shamsaei
,
N.
,
2021
, “
Surface Roughness Parameter and Modeling for Fatigue Behavior of Additive Manufactured Parts: A Non-destructive Data-Driven Approach
,”
Addit. Manuf.
,
46
, p.
102094
.
33.
International Organization for Standardization (ISO)
,
2021
,
Geometrical Product Specifications (GPS)—Surface Texture: Profile—Part 2: Terms, Definitions and Surface Texture Parameters
,
International Organization for Standardization (ISO)
,
Geneva, Switzerland
.
34.
Kotwal
,
C. A.
, and
Bhushan
,
B.
,
1996
, “
Contact Analysis of Non-Gaussian Surfaces for Minimum Static and Kinetic Friction and Wear
,”
Tribol. Trans.
,
39
(
4
), pp.
890
898
.
35.
Gao
,
Y.
,
Yang
,
W.
,
Huang
,
Z.
, and
Lu
,
Z.
,
2021
, “
Effects of Residual Stress and Surface Roughness on the Fatigue Life of Nickel Aluminium Bronze Alloy Under Laser Shock Peening
,”
Eng. Fract. Mech.
,
244
, p.
107524
.
36.
Grzesik
,
W.
, and
Żak
,
K.
,
2012
, “
Modification of Surface Finish Produced by Hard Turning Using Superfinishing and Burnishing Operations
,”
J. Mater. Process Technol.
,
212
(
1
), pp.
315
322
.
37.
Stout
,
K.
,
1980
, “
How Smooth So Smooth? Surface Measurements and Their Relevance in Manufacturing
,”
Prod. Eng.
,
59
(
5
), pp.
17
22
.
38.
Horváth
,
R.
,
Czifra
,
Á
, and
Drégelyi-Kiss
,
Á
,
2015
, “
Effect of Conventional and Non-conventional Tool Geometries to Skewness and Kurtosis of Surface Roughness in Case of Fine Turning of Aluminium Alloys With Diamond Tools
,”
Int. J. Adv. Manuf. Tech.
,
78
(
1
), pp.
297
304
.
39.
Yu
,
N.
, and
Polycarpou
,
A. A.
,
2001
, “
Contact of Rough Surfaces With Asymmetric Distribution of Asperity Heights
,”
ASME J. Tribol.
,
124
(
2
), pp.
367
376
.
40.
Panda
,
S.
,
Roy Chowdhury
,
S. K.
, and
Sarangi
,
M.
,
2015
, “
Effects of Non-Gaussian Counter-Surface Roughness Parameters on Wear of Engineering Polymers
,”
Wear
,
332–333
, pp.
827
835
.
41.
Pegues
,
J.
,
Roach
,
M.
,
Scott Williamson
,
R.
, and
Shamsaei
,
N.
,
2018
, “
Surface Roughness Effects on the Fatigue Strength of Additively Manufactured Ti-6Al-4 V
,”
Int. J. Fatigue
,
116
, pp.
543
552
.
42.
Lee
,
S.
,
Pegues
,
J. W.
, and
Shamsaei
,
N.
,
2020
, “
Fatigue Behavior and Modeling for Additive Manufactured 304L Stainless Steel: The Effect of Surface Roughness
,”
Int. J. Fatigue
,
141
, p.
105856
.
43.
Chen
,
X.
,
Zhai
,
W.
,
Dong
,
S.
,
Zheng
,
K.
,
Xu
,
R.
,
Wang
,
J.
,
Liu
,
X.
, and
Lu
,
W.
,
2020
, “
Investigations on Torsional Fretting Wear Properties of CuAlNi Processed by Ultrasonic Vibration-Assisted Milling
,”
Tribol. Int.
,
146
, p.
106238
.
44.
Benedetti
,
M.
,
Fontanari
,
V.
,
Bandini
,
M.
, and
Savio
,
E.
,
2015
, “
High- and Very High-Cycle Plain Fatigue Resistance of Shot Peened High-Strength Aluminum Alloys: The Role of Surface Morphology
,”
Int. J. Fatigue
,
70
, pp.
451
462
.
45.
Gu
,
H.
,
Jiao
,
L.
,
Yan
,
P.
,
Song
,
Y.
,
Guo
,
Z.
,
Qiu
,
T.
, and
Wang
,
X.
,
2022
, “
Dual-Crack Failure Behaviors of Milled Ti-6Al-4 V Alloy in Conformal Contact Fretting Fatigue
,”
Mater. Sci. Eng., A.
,
832
, p.
142465
.
46.
Buciumeanu
,
M.
,
2009
,
Prediction of Fretting Fatigue Life
,
Minho University
,
Largo do Paço 4704-553 Braga
. https://hdl.handle.net/1822/10179
47.
Buciumeanu
,
M.
,
Miranda
,
A. S.
, and
Silva
,
F. S.
,
2008
, “
Influence of Wear Properties on Fretting Fatigue Life of a CK45 Alloy and the Al7175 Alloy
,”
Mater. Sci. Forum.
,
587–588
, pp.
971
975
.
48.
Jerez-Mesa
,
R.
,
Landon
,
Y.
,
Travieso-Rodriguez
,
J. A.
,
Dessein
,
G.
,
Lluma-Fuentes
,
J.
, and
Wagner
,
V.
,
2018
, “
Topological Surface Integrity Modification of AISI 1038 Alloy After Vibration-Assisted Ball Burnishing
,”
Surf. Coat Technol.
,
349
, pp.
364
377
.
49.
Wang
,
Y.
,
Wang
,
X.
,
Liu
,
Z.
,
Liu
,
S.
,
Wang
,
S.
,
Chen
,
H.
,
Song
,
C.
,
Bai
,
Y.
,
Wang
,
P.
, and
Liu
,
Y.
,
2022
, “
A Plastic Strain Energy Method Exploration Between Machined Surface Integrity Evolution and Torsion Fatigue Behaviour of Low Alloy Steel
,”
Chinese J. Aeronaut.
,
35
(
10
), pp.
412
429
.
50.
Luan
,
X.
,
Zhao
,
W.
,
Liang
,
Z.
,
Xiao
,
S.
,
Liang
,
G.
,
Chen
,
Y.
,
Zou
,
S.
, and
Wang
,
X.
,
2020
, “
Experimental Study on Surface Integrity of Ultra-High-Strength Steel by Ultrasonic Hot Rolling Surface Strengthening
,”
Surf. Coat Technol.
,
392
, p.
125745
.
51.
Wang
,
X.
,
Dong
,
S.
,
Zhang
,
C.
, and
Jiang
,
B.
,
2022
, “
Analysis of Torsion Bar Failure Occurring During the Pre-Strained Manufacturing for Heavy Off-Road Tracked Vehicles
,”
Eng. Fail. Anal.
,
133
, p.
105956
.
You do not currently have access to this content.