Abstract

The tribological behaviors of Cu-based bulk metallic glass (BMG) Cu50.2Zr40.8Ti8.5Nb0.5 and conventional nickel–aluminum bronze (NAB) reference material were investigated in air and in 3.5% NaCl solution, respectively. The tribology tests were performed at room temperature using a reciprocating tribometer at a sliding speed of 1 m min−1 against a 6-mm diameter ZrO2 ball. When sliding in air, the friction coefficient of Cu-based BMG decreases with the applied loads (5 N, 10N, and 20 N), and the wear behavior is mainly affected by abrasion, delamination, and oxidation. In particular, the wear-rate of Cu-based BMG is about 22 times lower than that of conventional NAB when sliding in the air under a load of 5 N. When sliding in 3.5 wt% NaCl solution, Cu-based BMG demonstrates better static-corrosion resistance but worse tribocorrosion resistance compared with conventional NAB. Due to the combined effects of corrosion and lubrication caused by the solution, the wear-rate of the BMG in NaCl solution increases at 5 N, but decreases at 20 N when compared with the corresponding wear in air. The tribocorrosion of Cu-based BMG is mainly controlled by abrasive wear and the synergistic effects of abrasion and corrosion. By applying −1.3 V cathodic potential, the corrosive wear-rate of Cu-based BMG at 5 N was reduced by nearly 50%. This work provides an experimental reference for the tribological evaluation of Cu-based BMG in different environments.

References

1.
Wang
,
L.
,
Wang
,
J. G.
, and
Sun
,
M. T.
,
2020
, “
Mechanical Properties of Fe-Based Bulk Amorphous Fe41Co7Cr15Mo14C15B6Y2 Alloy Rods
,”
Chem. Phys. Lett.
,
750
, p.
137511
.
2.
Lee
,
J.
,
He
,
M. Y.
,
Yeo
,
C. D.
,
Kumar
,
G.
,
Hu
,
Z. L.
,
Quitevis
,
E. L.
, and
Thalangamaarachchige
,
V. D.
,
2018
, “
Friction and Wear of Pd-Rich Amorphous Alloy (Pd43Cu27Ni10P20) Under Dry and Ionic Liquid (IL) Lubricated Conditions
,”
Wear
,
408–409
, pp.
190
199
.
3.
Zhao
,
J.
,
Gao
,
M.
,
Ma
,
M. X.
,
Cao
,
X. F.
,
He
,
Y. Y.
,
Wang
,
W. H.
, and
Luo
,
J. B.
,
2018
, “
Influence of Annealing on the Tribological Properties of Zr-Based Bulk Metallic Glass
,”
J. Non-Cryst. Solids
,
481
, pp.
94
97
.
4.
Li
,
H. F.
,
Liu
,
Y.
,
Pang
,
S. J.
,
Liaw
,
P. K.
, and
Zhang
,
T.
,
2016
, “
Corrosion Fatigue Behavior of a Mg-Based Bulk Metallic Glass in a Simulated Physiological Environment
,”
Intermetallics
,
73
, pp.
31
39
.
5.
Takeuchi
,
A.
, and
Inoue
,
A.
,
2010
, “
Recent Development and Applications of Bulk Glassy Alloys
,”
Int. J. Appl. Glass Sci.
,
1
(
3
), pp.
273
295
.
6.
Khun
,
N. W.
,
Yu
,
H.
,
Chong
,
Z. Z.
,
Tian
,
P.
,
Tian
,
Y.
,
Tor
,
S. B.
, and
Liu
,
E.
,
2016
, “
Mechanical and Tribological Properties of Zr-Based Bulk Metallic Glass for Sports Applications
,”
Mater. Des.
,
92
, pp.
667
673
.
7.
Medina
,
M. A.
,
Acikgoz
,
O.
,
Rodriguez
,
A.
,
Meduri
,
C. S.
,
Kumar
,
G.
, and
Baykara
,
M. Z.
,
2020
, “
Comparative Tribological Properties of Pd-, Pt-, and Zr-Based Bulk Metallic Glasses
,”
Lubricants
,
8
(
9
), p.
85
.
8.
Ishida
,
M.
,
Takeda
,
H.
,
Nishiyama
,
N.
,
Kita
,
K.
,
Shimizu
,
Y.
,
Saotome
,
Y.
, and
Inoue
,
A.
,
2007
, “
Wear Resistivity of Super-Precision Microgear Made of Ni-Based Metallic Glass
,”
Mater. Sci. Eng., A
,
449–451
, pp.
149
154
.
9.
Ma
,
M. Z.
,
Liu
,
R. P.
,
Xiao
,
Y.
,
Lou
,
D. C.
,
Liu
,
L.
,
Wang
,
Q.
, and
Wang
,
W. K.
,
2004
, “
Wear Resistance of Zr-Based Bulk Metallic Glass Applied in Bearing Rollers
,”
Mater. Sci. Eng., A
,
386
(
1–2
), pp.
326
330
.
10.
Dusoe
,
K. J.
,
Vijayan
,
S.
,
Bissell
,
T. R.
,
Chen
,
J.
,
Morley
,
J. E.
,
Valencia
,
L.
,
Dongare
,
A. M.
,
Aindow
,
M.
, and
Lee
,
S. W.
,
2017
, “
Strong, Ductile, and Thermally Stable Cu-Based Metal-Intermetallic Nanostructured Composites
,”
Sci. Rep.
,
7
(
1
), p.
40409
.
11.
Qin
,
C. L.
,
Zhao
,
W. M.
, and
Inoue
,
A.
,
2011
, “
Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses
,”
Int. J. Mol. Sci.
,
12
(
4
), pp.
2275
2293
.
12.
Xu
,
H. W.
,
Du
,
Y. L.
, and
Deng
,
Y.
,
2012
, “
Effects of Y Addition on Structural and Mechanical Properties of CuZrAl Bulk Metallic Glass
,”
Trans. Nonferrous Met. Soc. China
,
22
(
4
), pp.
842
846
.
13.
Chen
,
Z.
,
Chen
,
W.
,
Zhu
,
S.
,
Cheng
,
J.
,
Tan
,
H.
, and
Yang
,
J.
,
2022
, “
Tribological Properties of Cu–25Zn–5Al–3Fe–3Mn Alloy at High Temperatures
,”
ASME J. Tribol.
,
144
(
12
), p.
121701
.
14.
Duan
,
J. Z.
,
Yang
,
Y.
,
Zhang
,
E. L.
, and
Wang
,
H.
,
2020
, “
Co-Cr-Mo-Cu Alloys for Clinical Implants with Osteogenic Effect by Increasing Bone Induction, Formation and Development in a Rabbit Model
,”
Burns Trauma
,
8
, p.
tkaa036
.
15.
Li
,
M. J.
,
Nan
,
L.
,
Xu
,
D. K.
,
Ren
,
G. G.
, and
Yang
,
K.
,
2015
, “
Antibacterial Performance of a Cu-Bearing Stainless Steel Against Microorganisms in Tap Water
,”
J. Mater. Sci. Technol.
,
31
(
3
), pp.
243
251
.
16.
Biswas
,
P.
, and
Bandyopadhyaya
,
R.
,
2018
, “
Demonstration of Complete Bacterial-Killing in Water at a Very High Flow-Rate: Use of a Surface-Enhanced Copper Nanoparticle With Activated Carbon as a Hybrid
,”
J. Chem. Technol. Biotechnol.
,
93
(
2
), pp.
508
517
.
17.
Renner
,
P.
,
Jha
,
S.
,
Chen
,
Y.
,
Raut
,
A.
,
Mehta
,
S. G.
, and
Liang
,
H.
,
2021
, “
A Review on Corrosion and Wear of Additively Manufactured Alloys
,”
ASME J. Tribol.
,
143
(
5
), p.
050802
.
18.
Lee
,
P. Y.
,
Cheng
,
Y. M.
,
Chen
,
J. Y.
, and
Hu
,
C. J.
,
2017
, “
Formation and Corrosion Behavior of Mechanically-Alloyed Cu–Zr–Ti Bulk Metallic Glasses
,”
Metals
,
7
(
4
), p.
148
.
19.
Baca
,
N.
,
Conner
,
R. D.
, and
Garrett
,
S. J.
,
2014
, “
Corrosion Behavior of Oxide-Covered Cu47Ti34Zr11Ni8 (Vitreloy 101) in Chloride-Containing Solutions
,”
Mater. Sci. Eng., B
,
184
(
1
), pp.
105
112
.
20.
Asami
,
K.
,
Qin
,
C. L.
, and
Zhang
,
W.
,
2007
, “
A Novel Cu-Based BMG Composite With High Corrosion Resistance and Excellent Mechanical Properties
,”
Acta Mater.
,
54
(
14
), pp.
3713
3719
.
21.
Liang
,
D. D.
,
Wei
,
X. S.
,
Ma
,
T. C.
,
Chen
,
B.
,
Jiang
,
H. R.
,
Dong
,
Y.
, and
Shen
,
J.
,
2019
, “
Sliding Tribocorrosion Behavior of Fe-Based Bulk Metallic Glass Under Corrosive Environments
,”
J. Non-Cryst. Solids
,
510
, pp.
62
70
.
22.
Hua
,
N. B.
,
Chen
,
W. Z.
,
Wang
,
W. G.
,
Lu
,
H. T.
,
Ye
,
X. Y.
,
Li
,
G. H.
,
Lin
,
C.
, and
Huang
,
X. F.
,
2016
, “
Tribological Behavior of a Ni-Free Zr-Based Bulk Metallic Glass With Potential for Biomedical Applications
,”
Mater. Sci. Eng., C
,
66
, pp.
268
277
.
23.
Ji
,
X. L.
,
Alavi
,
S. H.
, and
Harimkar
,
S. P.
,
2015
, “
High-Temperature Sliding Wear Behavior of Zr-Based Bulk Amorphous Alloys
,”
JOM
,
67
(
7
), pp.
1578
1584
.
24.
Sawyer
,
V.
,
Tao
,
X.
,
Dong
,
H.
,
Dashtbozorg
,
B.
,
Li
,
X. Y.
,
Sammons
,
R.
, and
Dong
,
H. S.
,
2020
, “
Improving the Tribological Properties and Biocompatibility of Zr-Based Bulk Metallic Glass for Potential Biomedical Applications
,”
Materials
,
13
(
8
), p.
1960
.
25.
Joo
,
S. H.
,
Pi
,
D. H.
,
Guo
,
J.
,
Kato
,
H.
,
Lee
,
S.
, and
Kim
,
H. S.
,
2016
, “
Enhanced Wear Resistivity of a Zr-Based Bulk Metallic Glass Processed by High-Pressure Torsion Under Reciprocating Dry Conditions
,”
Met. Mater. Int.
,
22
(
3
), pp.
383
390
.
26.
Hua
,
N. B.
,
Hong
,
X. S.
,
Liao
,
Z. L.
,
Zhang
,
L.
,
Ye
,
X. Y.
,
Wang
,
Q. T.
, and
Liaw
,
P. K.
,
2020
, “
Corrosive Wear Behaviors and Mechanisms of a Biocompatible Fe-Based Bulk Metallic Glass
,”
J. Non-Cryst. Solids
,
542
, p.
120088
.
27.
Hua
,
N. B.
,
Zhang
,
X. N.
,
Liao
,
Z. L.
,
Hong
,
X. S.
,
Guo
,
Q. H.
,
Huang
,
Y. T.
,
Ye
,
X. Y.
, et al
,
2020
, “
Dry Wear Behavior and Mechanism of a Fe-Based Bulk Metallic Glass: Description by Hertzian Contact Calculation and Finite-Element Method Simulation
,”
J. Non-Cryst. Solids
,
543
, p.
120065
.
28.
Cobo Ocejo
,
I.
,
Biezma Moraleda
,
M. V.
, and
Linhardt
,
P.
,
2022
, “
Corrosion Behavior of Heat-Treated Nickel-Aluminum Bronze and Manganese-Aluminum Bronze in Natural Waters
,”
Metals
,
12
(
3
), p.
380
.
29.
Park
,
J. C.
,
Han
,
M. S.
, and
Kim
,
S. J.
,
2012
, “
Investigation on the Cavitation Damage Behavior With Temperature and Cavitation Time in Seawater
,”
Surf. Interface Anal.
,
44
(
11–12
), pp.
1407
1410
.
30.
Huttunen-Saarivirta
,
E.
,
Isotahdon
,
E.
,
Metsäjoki
,
J.
,
Salminen
,
T.
,
Ronkainen
,
H.
, and
Carpén
,
L.
,
2019
, “
Behaviour of Leaded tin Bronze in Simulated Seawater in the Absence and Presence of Tribological Contact With Alumina Counterbody: Corrosion, Wear and Tribocorrosion
,”
Tribol. Int.
,
129
, pp.
257
271
.
31.
Liao
,
Z. L.
,
Hua
,
N. B.
,
Chen
,
W. Z.
,
Huang
,
Y. T.
, and
Zhang
,
T.
,
2018
, “
Correlations Between the Wear Resistance and Properties of Bulk Metallic Glasses
,”
Intermetallics
,
93
, pp.
290
298
.
32.
He
,
T. T.
,
Shao
,
R. N.
,
Du
,
S. M.
, and
Cai
,
H. Z.
,
2020
, “
Effect of WC Content on the Friction and Wear Properties of Ni-WC Coatings on 6082-T6 Aluminum Alloy
,”
Mater. Res. Express
,
7
(
6
), p.
066530
.
33.
Liu
,
X.
,
Zhao
,
X. Q.
,
An
,
Y. L.
,
Hou
,
G. L.
,
Li
,
S. J.
,
Deng
,
W.
,
Zhou
,
H. D.
, and
Chen
,
J. M.
,
2018
, “
Effects of Loads on Corrosion-Wear Synergism of NiCoCrAlYTa Coating in Artificial Seawater
,”
Tribol. Int.
,
118
(
1
), pp.
421
431
.
34.
Valdés Canaval
,
M. A.
,
Gómez
,
L. M.
,
Toro
,
A.
,
Isaza M
,
C. A.
, and
Rudas
,
S. J.
,
2021
, “
Dynamic Model for Friction-Induced Oxidation of Metals in Dry Sliding Processes
,”
ASME J. Tribol.
,
143
(
8
), p.
081704
.
35.
Hua
,
N. B.
,
Zheng
,
Z. L.
,
Fang
,
H.
,
Ye
,
X. Y.
,
Lin
,
C.
,
Li
,
G. H.
,
Wang
,
W. G.
,
Chen
,
W. Z.
, and
Zhang
,
T.
,
2015
, “
Dry and Lubricated Tribological Behavior of a Ni- and Cu-Free Zr-Based Bulk Metallic Glass
,”
J. Non-Cryst. Solids
,
426
, pp.
63
71
.
36.
Wang
,
Y.
,
Shi
,
L. L.
,
Duan
,
D. L.
,
Li
,
S.
, and
Xu
,
J.
,
2014
, “
Tribological Properties of Zr61Ti2Cu25Al12 Bulk Metallic Glass Under Simulated Physiological Conditions
,”
Mater. Sci. Eng., C
,
37
, pp.
292
304
.
37.
Hua
,
N. B.
,
Huang
,
Y. X.
,
Zheng
,
Z. G.
,
Huang
,
Y. T.
,
Su
,
M. Y.
,
Liao
,
Z. L.
, and
Chen
,
W. Z.
,
2017
, “
Tribological and Corrosion Behaviors of Mg56.5Cu27Ag5Dy11.5 Bulk Metallic Glass in NaCl Solution
,”
J. Non-Cryst. Solids
,
459
, pp.
36
44
.
38.
Yan
,
T. T.
,
Tan
,
L. L.
,
Xiong
,
D. S.
,
Liu
,
X. J.
,
Zhang
,
B. C.
, and
Yang
,
K.
,
2010
, “
Fluoride Treatment and In vitro Corrosion Behavior of an AZ31B Magnesium Alloy
,”
Mater. Sci. Eng., C
,
30
(
5
), pp.
740
748
.
39.
Song
,
G. L.
, and
Atrens
,
A.
,
2003
, “
Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance
,”
Adv. Eng. Mater.
,
15
(
12
), pp.
837
858
.
40.
Nam
,
N. D.
,
Mathesh
,
M.
,
Le
,
T. V.
, and
Nguyen
,
H. T.
,
2014
, “
Corrosion Behavior of Mg–5Al–xZn Alloys in 3.5 wt% NaCl Solution
,”
J. Alloys Compd.
,
616
, pp.
662
668
.
41.
López-Ortega
,
A.
,
Bayón
,
R.
,
Arana
,
J. L.
,
Arredondo
,
A.
, and
Igartua
,
A.
,
2018
, “
Influence of Temperature on the Corrosion and Tribocorrosion Behaviour of High-Strength Low-Alloy Steels Used in Offshore Applications
,”
Tribol. Int.
,
121
(
1
), pp.
341
352
.
42.
Hasan
,
F.
,
Iqbal
,
J.
, and
Ridley
,
N.
,
1985
, “
Microstructure of As-Cast Aluminium Bronze Containing Iron
,”
Mater. Sci. Technol.
,
1
(
4
), pp.
312
315
.
43.
Ding
,
Y.
,
Zhao
,
R.
,
Qin
,
Z. B.
,
Wu
,
Z.
,
Wang
,
L. Q.
,
Liu
,
L.
, and
Lu
,
W. J.
,
2019
, “
Evolution of the Corrosion Product Film on Nickel-Aluminum Bronze and Its Corrosion Behavior in 3.5 wt % NaCl Solution
,”
Materials
,
12
(
2
), p.
209
.
44.
Wang
,
Z. N.
,
Yan
,
Y.
,
Wu
,
Y.
,
Huang
,
X.
,
Zhang
,
Y.
,
Su
,
Y. J.
, and
Qiao
,
L. J.
,
2022
, “
Corrosion and Tribocorrosion Behavior of Equiatomic Refractory Medium Entropy TiZr(Hf, Ta, Nb) Alloys in Chloride Solutions
,”
Corros. Sci.
,
199
, p.
110166
.
45.
Fu
,
Y. Q.
,
Zhou
,
F.
,
Zhang
,
M. D.
,
Wang
,
Q. Z.
, and
Zhou
,
Z. F.
,
2021
, “
Structure and Tribocorrosion Behavior of CrMoSiCN Nanocomposite Coating With Low C Content in Artificial Seawater
,”
Friction
,
9
(
6
), pp.
1599
1615
.
46.
Ye
,
Y.
,
Wang
,
Y.
,
Ma
,
X.
,
Zhang
,
D.
,
Wang
,
L.
, and
Li
,
X.
,
2017
, “
Tribocorrosion Behaviors of Multilayer PVD DLC Coated 304L Stainless Steel in Seawater
,”
Diamond Relat. Mater.
,
79
, pp.
70
78
.
47.
Stack
,
M. M.
,
Rodling
,
J.
,
Mathew
,
M. T.
,
Jawan
,
H.
,
Huang
,
W.
,
Park
,
G.
, and
Hodge
,
C.
,
2010
, “
Micro-abrasion–corrosion of a Co–Cr/UHMWPE Couple in Ringer's Solution: An Approach to Construction of Mechanism and Synergism Maps for Application to Bio-Implants
,”
Wear
,
269
(
5–6
), pp.
376
382
.
48.
Sun
,
Y.
, and
Haruman
,
E.
,
2011
, “
Tribocorrosion Behaviour of Low Temperature Plasma Carburised 316L Stainless Steel in 0.5 M NaCl Solution
,”
Corros. Sci.
,
53
(
12
), pp.
4131
4140
.
49.
Diomidis
,
N.
,
Mischler
,
S.
,
More
,
N. S.
, and
Roy
,
M.
,
2012
, “
Tribo-electrochemical Characterization of Metallic Biomaterials for Total Joint Replacement
,”
Acta Biomater.
,
8
(
2
), pp.
852
859
.
50.
Chen
,
J.
, and
Zhang
,
Q.
,
2016
, “
Effect of Electrochemical State on Corrosion-Wear Behaviors of TC4 Alloy in Artificial Seawater
,”
Trans. Nonferrous Metals Soc.
,
26
(
4
), pp.
1011
1018
.
You do not currently have access to this content.