Abstract

Steam generator tube, which is commonly made of Inconel 690 alloy, is suffered from flow-induced vibration and worked under high-temperature and high-pressure water/steam environment. This working condition leads to significant synergistic damage of fretting wear and corrosion. Thus, to investigate the synergistic damage mechanism, a flow-induced vibration wear simulated method was used to investigate the flow-induced vibration wear behavior of 690 alloy tube against 304 SS plate at 100 °C, 200 °C, and 285 °C in steam/water environment. Results show that the fretting wear damage decreased with temperature in water environment. But for the steam environment, fretting wear damage decreased to a minimum value at 200 °C and then increased to a maximum value at 285 °C. The synergistic damage mechanism between wear and corrosion was analyzed. Wear can damage the material surface and promote oxidation. On the other hand, the oxide layer formed on the surface can protect the surface from wear or promote wear damage, which depends on its characteristics influenced by the environment.

References

1.
Cai
,
Z. B.
,
Li
,
Z. Y.
,
Yin
,
M. G.
,
Zhu
,
M. H.
, and
Zhou
,
Z. R.
,
2020
, “
A Review of Fretting Study on Nuclear Power Equipment
,”
Tribol. Int.
,
144
, p.
106095
.
2.
Guo
,
X. L.
,
Lai
,
P.
,
Li
,
L.
,
Tang
,
L. C.
, and
Zhang
,
L. F.
,
2020
, “
Progress in Studying the Fretting Wear/Corrosion of Nuclear Steam Generator Tubes
,”
Ann. Nucl. Energy
,
144
, p.
107556
.
3.
Wang
,
J. Z.
,
Han
,
E. H.
, and
Wang
,
J. Q.
,
2015
, “
The Repassivation Kinetics Study of Alloy 800 in High-Temperature Pressurized Water
,”
Electrochem. Commun.
,
60
, pp.
100
103
.
4.
Zhong
,
X. Y.
,
Wu
,
X. Q.
, and
Han
,
E. H.
,
2018
, “
Characteristics of Oxidation and Oxygen Penetration of Alloy 690 in 600 °C Aerated Supercritical Water
,”
J. Mater. Sci. Technol.
,
34
(
3
), pp.
561
569
.
5.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
2003
, “
Vibration Analysis of Shell-and-Tube Heat Exchangers: An Overview—Part 2: Vibration Response, Fretting-Wear, Guidelines
,”
J. Fluids Struct.
,
18
(
5
), pp.
485
500
.
6.
Lai
,
P.
,
Gao
,
X. C.
,
Tang
,
L. C.
,
Guo
,
X. L.
, and
Zhang
,
L. F.
,
2018
, “
Effect of Temperature on Fretting Wear Behavior and Mechanism of Alloy 690 in Water
,”
Nucl. Eng. Des.
,
327
, pp.
51
60
.
7.
Ren
,
W. B.
,
Wang
,
P.
,
Fu
,
Y. H.
,
Pan
,
C. F.
, and
Song
,
J.
,
2015
, “
Effects of Temperature on Fretting Corrosion Behaviors of Gold-Plated Copper Alloy Electrical Contacts
,”
Tribol. Int.
,
83
, pp.
1
11
.
8.
Liu
,
X. C.
,
Ming
,
H. L.
,
Zhang
,
Z. M.
,
Wang
,
J. Q.
,
Tang
,
L. C.
,
Qian
,
H.
,
Xie
,
Y. C.
, and
Han
,
E. H.
,
2019
, “
Effects of Temperature on Fretting Corrosion Between Alloy 690TT and 405 Stainless Steel in Pure Water
,”
Acta Metall. Sin.
,
32
(
12
), pp.
1437
1448
.
9.
Jeong
,
S. H.
,
Cho
,
C. W.
, and
Lee
,
Y. Z.
,
2005
, “
Friction and Wear of Inconel 690 for Steam Generator Tube in Elevated Temperature Water Under Fretting Condition
,”
Tribol. Int.
,
38
(
3
), pp.
283
288
.
10.
Ming
,
H. L.
,
Liu
,
X. C.
,
Lai
,
J.
,
Wang
,
J. Q.
,
Gao
,
L. X.
, and
Han
,
E. H.
,
2020
, “
Fretting Wear Between Alloy 690 and 405 Stainless Steel in High Temperature Pressurized Water With Different Normal Force and Displacement
,”
J. Nucl. Mater.
,
529
, p.
151930
.
11.
Xin
,
L.
,
Yang
,
B. B.
,
Wang
,
Z. H.
,
Li
,
J.
,
Lu
,
Y. H.
, and
Shoji
,
T.
,
2016
, “
Effect of Normal Force on Fretting Wear Behavior and Mechanism of Alloy 690TT in High Temperature Water
,”
Wear
,
368–369
, pp.
210
218
.
12.
Guo
,
X. L.
,
Lai
,
P.
,
Tang
,
L. C.
,
Wang
,
J. M.
, and
Zhang
,
L. F.
,
2017
, “
Effects of Sliding Amplitude and Normal Load on the Fretting Wear Behavior of Alloy 690 Tube Exposed to High Temperature Water
,”
Tribol. Int.
,
116
, pp.
155
163
.
13.
Xin
,
L.
,
Liang
,
X.
,
Han
,
Y. M.
,
Lu
,
Y. H.
, and
Shoji
,
T.
,
2019
, “
Investigation Into the Fretting Corrosion of Alloy 690 TT Against Type 304 Stainless Steel in High Temperature Pure Water Under Partial Slip Conditions
,”
Tribol. Int.
,
134
, pp.
93
101
.
14.
Xin
,
L.
,
Yang
,
B. B.
,
Wang
,
Z. H.
,
Li
,
J.
,
Lu
,
Y. H.
, and
Shoji
,
T.
,
2016
, “
Microstructural Evolution of Subsurface on Inconel 690TT Alloy Subjected to Fretting Wear at Elevated Temperature
,”
Mater. Des.
,
104
, pp.
152
161
.
15.
Xin
,
L.
,
Han
,
Y.
,
Ling
,
L.
,
Zhang
,
W.
,
Lu
,
Y.
, and
Shoji
,
T.
,
2020
, “
The Evolution of Fretting Wear Behavior and Damage Mechanism in Alloy 690TT With Cycle Number
,”
Materials
,
13
(
10
), p.
2417
.
16.
Diomidis
,
N.
,
Celis
,
J. P.
,
Ponthiaux
,
P.
, and
Wenger
,
F.
,
2010
, “
Tribocorrosion of Stainless Steel in Sulfuric Acid: Identification of Corrosion–Wear Components and Effect of Contact Area
,”
Wear
,
269
(
1–2
), pp.
93
103
.
17.
Barril
,
S.
,
Mischler
,
S.
, and
Landolt
,
D.
,
2005
, “
Electrochemical Effects on the Fretting Corrosion Behaviour of Ti6al4v in 0.9% Sodium Chloride Solution
,”
Wear
,
259
(
1–6
), pp.
282
291
.
18.
Barril
,
S.
,
Mischler
,
S.
, and
Landolt
,
D.
,
2004
, “
Influence of Fretting Regimes on the Tribocorrosion Behaviour of Ti6Al4v in 0.9wt% Sodium Chloride Solution
,”
Wear
,
256
(
9–10
), pp.
963
972
.
19.
Sauger
,
E.
,
Fouvry
,
S.
,
Ponsonnet
,
L.
,
Kapsa
,
P.
,
Martin
,
J. M.
, and
Vincent
,
L.
,
2000
, “
Tribologically Transformed Structure in Fretting
,”
Wear
,
245
(
1–2
), pp.
39
52
.
20.
Kim
,
D. G.
, and
Lee
,
Y. Z.
,
2001
, “
Experimental Investigation on Sliding and Fretting Wear of Steam Generator Tube Materials
,”
Wear
,
250
(
1–12
), pp.
673
680
.
21.
Chung
,
I.
, and
Lee
,
M.
,
2011
, “
An Experimental Study on Fretting Wear Behavior of Cross-Contacting Inconel 690 Tubes
,”
Nucl. Eng. Des.
,
241
(
10
), pp.
4103
4110
.
22.
Wang
,
Z. H.
,
Xu
,
J.
,
Li
,
J.
,
Xin
,
L.
,
Lu
,
Y. H.
,
Shoji
,
T.
,
Takeda
,
Y.
,
Otsuka
,
Y.
, and
Mutoh
,
Y.
,
2018
, “
The Synergy of Corrosion and Fretting Wear Process on Inconel 690 in the High Temperature High Pressure Water Environment
,”
J. Nucl. Mater.
,
502
, pp.
255
262
.
23.
Ko
,
P. L.
,
1979
, “
Experimental Studies of Tube Frettings in Steam Generators and Heat Exchangers
,”
ASME J. Pressure Vessel Technol.
,
101
(
2
), pp.
125
133
.
24.
Fisher
,
N. J.
,
Chow
,
A. B.
, and
Weckwerth
,
M. K.
,
1995
, “
Experimental Fretting-Wear Studies of Steam Generator Materials
,”
ASME J. Pressure Vessel Technol.
,
117
(
4
), pp.
312
320
.
25.
Déforge
,
D.
,
Lina
,
A. S.
,
Boursier
,
J.-M.
,
Wenger
,
F. O.
,
Ponthiaux
,
P.
, and
Ambard
,
A.
, “
Wear Measurements Using Electrochemical Methods
,” ASME Paper No. PVP2005-71361.
26.
Guo
,
K.
,
2020
,
“An Investigation on Fretting Wear Mechanism and Prediction Model of Steam Generator Tube Bundles,” Ph.D. thesis
,
Tianjin University
,
Tianjin, China
.
27.
Oeng Ö
,
A.
, and
Ziada
,
S.
,
1998
, “
An In-Depth Study of Vortex Shedding, Acoustic Resonance and Turbulent Forces in Normal Triangle Tube Arrays
,”
J. Fluids Struct.
,
12
(
6
), pp.
717
758
.
28.
Xin
,
L.
,
Yang
,
B. B.
,
Li
,
J.
,
Lu
,
Y. H.
, and
Shoji
,
T.
,
2017
, “
Wear Damage of Alloy 690TT in Partial and Gross Slip Fretting Regimes at High Temperature
,”
Wear
,
390–391
, pp.
71
79
.
29.
Xin
,
L.
,
Huang
,
Q.
,
Han
,
Y. M.
,
Ji
,
H. C.
,
Lu
,
Y. H.
, and
Shoji
,
T.
,
2020
, “
Insights Into the Fatigue Cracking of Alloy 690TT Subjected to Fretting Wear Under Partial Slip Conditions
,”
Mater. Charact.
,
159
, p.
110040
.
30.
Mi
,
X.
,
Wang
,
W. X.
,
Xiong
,
X. M.
,
Qian
,
H.
,
Tang
,
L. C.
,
Xie
,
Y. C.
,
Peng
,
J. F.
,
Cai
,
Z. B.
, and
Zhu
,
M. H.
,
2015
, “
Investigation of Fretting Wear Behavior of Inconel 690 Alloy in Tube/Plate Contact Configuration
,”
Wear
,
328–329
, pp.
582
590
.
31.
Yun
,
J. Y.
,
Lee
,
H. S.
,
Hur
,
D. H.
,
Kang
,
W. S.
,
Bae
,
C. H.
, and
Kim
,
S. J.
,
2016
, “
Effect of Oxidation Film on the Fretting Wear Behavior of Alloy 690 Steam Generator Tube Mated With Sus 409
,”
Wear
,
368–369
, pp.
344
349
.
32.
Movahedi-Rad
,
A.
,
Pelaseyed
,
S. S.
,
Attarian
,
M.
, and
Shokrallahzadeh
,
R.
,
2016
, “
Oxidation Behavior of AISI 321, AISI 316, and AISI 409 Stainless Steels: Kinetic, Thermodynamic, and Diffusion Studies
,”
J. Mater. Res.
,
31
(
14
), pp.
2088
2096
.
33.
Viat
,
A.
,
Guillonneau
,
G.
,
Fouvry
,
S.
,
Kermouche
,
G.
,
Sao Joao
,
S.
,
Wehrs
,
J.
,
Michler
,
J.
, and
Henne
,
J.-F.
,
2017
, “
Brittle to Ductile Transition of Tribomaterial in Relation to Wear Response at High Temperatures
,”
Wear
,
392–393
, pp.
60
68
.
34.
Rybiak
,
R.
,
Fouvry
,
S.
, and
Bonnet
,
B.
,
2010
, “
Fretting Wear of Stainless Steels Under Variable Temperature Conditions: Introduction of a ‘Composite’ Wear Law
,”
Wear
,
268
(
3–4
), pp.
413
423
.
35.
Rynio
,
C.
,
Hattendorf
,
H.
,
Klöwer
,
J.
, and
Eggeler
,
G.
,
2014
, “
On the Physical Nature of Tribolayers and Wear Debris After Sliding Wear in a Superalloy/Steel Tribosystem at 25 and 300 °C
,”
Wear
,
317
(
1–2
), pp.
26
38
.
36.
Stott
,
F. H.
,
Lin
,
D. S.
, and
Wood
,
G. C.
,
1973
, “
The Structure and Mechanism of Formation of the ‘Glaze’ Oxide Layers Produced on Nickel-Based Alloys During Wear at High Temperatures
,”
Corros. Sci.
,
13
(
6
), pp.
449
469
.
37.
Soria
,
S. R.
,
Tolley
,
A.
, and
Yawny
,
A.
,
2016
, “
A Study of Debris and Wear Damage Resulting From Fretting of Incoloy 800 Steam Generator Tubes Against Aisi Type 304 Stainless Steel
,”
Wear
,
368–369
, pp.
219
229
.
38.
Gilbert
,
J. L.
,
Mali
,
S.
,
Urban
,
R. M.
,
Silverton
,
C. D.
, and
Jacobs
,
J. J.
,
2012
, “
In Vivo Oxide-Induced Stress Corrosion Cracking of Ti–6Al–4V in a Neck-Stem Modular Taper: Emergent Behavior in a New Mechanism of in Vivo Corrosion
,”
J. Biomed. Mater. Res. Part B
,
100
(
2
), pp.
584
594
.
39.
Li
,
J.
,
Ma
,
M.
,
Lu
,
Y. H.
, and
Xin
,
L.
,
2016
, “
Evolution of Wear Damage in Inconel 600 Alloy Due to Fretting Against Type 304 Stainless Steel
,”
Wear
,
346–347
, pp.
15
21
.
40.
Mi
,
X.
,
Cai
,
Z. B.
,
Xiong
,
X. M.
,
Qian
,
H.
,
Tang
,
L. C.
,
Xie
,
Y. C.
,
Peng
,
J. F.
, and
Zhu
,
M. H.
,
2016
, “
Investigation on Fretting Wear Behavior of 690 Alloy in Water Under Various Temperatures
,”
Tribol. Int.
,
100
, pp.
400
409
.
41.
Kim
,
J.
,
Choi
,
K. J.
,
Bahn
,
C. B.
, and
Kim
,
J. H.
,
2014
, “
In Situ Raman Spectroscopic Analysis of Surface Oxide Films on Ni-Base Alloy/Low Alloy Steel Dissimilar Metal Weld Interfaces in High-Temperature Water
,”
J. Nucl. Mater.
,
449
(
1–3
), pp.
181
187
.
42.
Kim
,
J. H.
, and
Hwang
,
I. S.
,
2005
, “
Development of an in Situ Raman Spectroscopic System for Surface Oxide Films on Metals and Alloys in High Temperature Water
,”
Nucl. Eng. Des.
,
235
(
9
), pp.
1029
1040
.
43.
de Faria
,
D. L. A.
,
Venâncio Silva
,
S.
, and
de Oliveira
,
M. T.
,
1997
, “
Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides
,”
J. Raman Spectrosc.
,
28
(
11
), pp.
873
878
.
44.
Lefaix-Jeuland
,
H.
,
Marchetti
,
L.
,
Perrin
,
S.
,
Pijolat
,
M.
,
Sennour
,
M.
, and
Molins
,
R.
,
2011
, “
Oxidation Kinetics and Mechanisms of Ni-Base Alloys in Pressurised Water Reactor Primary Conditions: Influence of Subsurface Defects
,”
Corros. Sci.
,
53
(
12
), pp.
3914
3922
.
45.
Kuang
,
W.
,
Wu
,
X.
,
Han
,
E.-H.
, and
Rao
,
J.
,
2011
, “
The Mechanism of Oxide Film Formation on Alloy 690 in Oxygenated High Temperature Water
,”
Corros. Sci.
,
53
(
11
), pp.
3853
3860
.
46.
Kuang
,
W.
,
Wu
,
X.
, and
Han
,
E.-H.
,
2013
, “
Influence of Dissolved Oxygen Concentration on the Oxide Film Formed on Alloy 690 in High Temperature Water
,”
Corros. Sci.
,
69
, pp.
197
204
.
You do not currently have access to this content.