Abstract

Wire arc additive manufacturing (WAAM) is an efficient metal additive manufacturing technology. It can be easily accomplished with a gas metal arc welding (GMAW)—cold metal transfer (CMT) machine due to low heat input and low spatter generation characteristics. Austenitic stainless steel (ASS 308L) single thin walls were fabricated using ER308L filler wire having 1.2 mm diameter. The wear summary of the WAAM-processed 308L ASS under dry sliding at severe loading conditions is presented. Wear tests were done under dry (unlubricated) conditions, using a typical high-load pin-on-disc tribometer. AM-ASS processed with a lower heat input exhibited a low coefficient of friction (COF) and wear-rate. The microhardness is observed to be reducing steadily from the bottom layer to the top layer along the building direction to roughly 11.73%, 10.09%, and 8.44% in low, medium, and high heat input, respectively. This is attributed to the thermal history experienced by the material. X-ray diffraction (XRD) analysis of wear debris reveals that martensite is the most prevalent phase. In the wear behavior of AM-ASS, austenite transforms into martensite due to the metastability of ASS during plastic deformation. At severe stresses, plastic deformation of sliding surfaces is more prevalent. Ferrite (%) concentration decreases with the increasing load due to increased plastic deformation, which converts austenite to martensite. As deformation wear debris rolls, it hardens, fractures, and becomes cylindrical, which confirms the adhesive wear mechanism.

References

1.
Kocovic
,
P.
,
2017
,
3D Printing and Its Impact on the Production of Fully Functional Components
,
IGI Global, USA
.
2.
Eyers
,
D. R.
, and
Potter
,
A. T.
,
2017
, “
Industrial Additive Manufacturing: A Manufacturing Systems Perspective
,”
Comput. Ind.
,
92–93
, pp.
208
218
.
3.
Zeng
,
C.
,
Zhang
,
B.
,
Hemmasian Ettefagh
,
A.
,
Wen
,
H.
,
Yao
,
H.
,
Meng
,
W. J.
, and
Guo
,
S.
,
2020
, “
Mechanical, Thermal, and Corrosion Properties of Cu-10Sn Alloy Prepared by Laser-Powder-Bed-Fusion Additive Manufacturing
,”
Addit. Manuf.
,
35
, p.
101411
.
4.
Renner
,
P.
,
Jha
,
S.
,
Chen
,
Y.
,
Raut
,
A.
,
Mehta
,
S. G.
, and
Liang
,
H.
,
2021
, “
A Review on Corrosion and Wear of Additively Manufactured Alloys
,”
ASME J. Tribol.
,
143
(
5
), p.
050802
.
5.
Srivatsav
,
S.
,
Jayakumar
,
V.
, and
Sathishkumar
,
M.
,
2021
, “
Recent Developments and Challenges Associated With Wire Arc Additive Manufacturing of Al Alloy: A Review
,”
Mater. Today Proc.
,
46
(
17
), pp.
8561
8566
.
6.
Hemachandra
,
M.
,
Thapliyal
,
S.
, and
Adepu
,
K.
,
2022
, “
A Review on Microstructural and Tribological Performance of Additively Manufactured Parts
,”
J. Mater. Sci.
,
57
(
36
), pp.
17139
17161
.
7.
Patel
,
M.
,
Mulgaonkar
,
S.
,
Desai
,
H.
, and
Borse
,
T.
,
2021
, “
Development and Implementation of Wire Arc Additive Manufacturing (WAAM) Based on Pulse Spray GMAW for Aluminum Alloy (AlSi7Mg)
,”
Trans. Indian Inst. Met.
,
74
(
5
), pp.
1129
1140
.
8.
Banerjee
,
S.
,
Paul
,
A. R.
,
Mukherjee
,
M.
, and
Vadali
,
S. R. K.
,
2022
, “
A New Adaptive Process Control Scheme for Efficient Wire Arc Additive Manufacturing of Thin-Walled SS308L Component
,”
Int. J. Adv. Manuf. Technol.
,
121
(
11–12
), pp.
8099
8113
.
9.
Attar
,
H.
,
Bermingham
,
M. J.
,
Ehtemam-Haghighi
,
S.
,
Dehghan-Manshadi
,
A.
,
Kent
,
D.
, and
Dargusch
,
M. S.
,
2019
, “
Evaluation of the Mechanical and Wear Properties of Titanium Produced by Three Different Additive Manufacturing Methods for Biomedical Application
,”
Mater. Sci. Eng. A
,
760
, pp.
339
345
.
10.
Song
,
R. B.
,
Xiang
,
J. Y.
, and
Hou
,
D. P.
,
2011
, “
Characteristics of Mechanical Properties and Microstructure for 316L Austenitic Stainless Steel
,”
J. Iron Steel Res. Int.
,
18
(
11
), pp.
53
59
.
11.
Xie
,
F.
,
He
,
X.
,
Cao
,
S.
, and
Qu
,
X.
,
2013
, “
Structural and Mechanical Characteristics of Porous 316L Stainless Steel Fabricated by Indirect Selective Laser Sintering
,”
J. Mater. Process. Technol.
,
213
(
6
), pp.
838
843
.
12.
Farias
,
M. C. M.
,
Souza
,
R. M.
,
Sinatora
,
A.
, and
Tanaka
,
D. K.
,
2007
, “
The Influence of Applied Load, Sliding Velocity and Martensitic Transformation on the Unlubricated Sliding Wear of Austenitic Stainless Steels
,”
Wear
,
263
(
1–6
SPEC. ISS.), pp.
773
781
.
13.
Lo
,
K. H.
,
Shek
,
C. H.
, and
Lai
,
J. K. L.
,
2009
, “
Recent Developments in Stainless Steels
,”
Mater. Sci. Eng. R Reports
,
65
(
4–6
), pp.
39
104
.
14.
Alam
,
M. K.
,
Mehdi
,
M.
,
Urbanic
,
R. J.
, and
Edrisy
,
A.
,
2020
, “
Mechanical Behavior of Additive Manufactured AISI 420 Martensitic Stainless Steel
,”
Mater. Sci. Eng. A
,
773
, p.
138815
.
15.
Wang
,
X. H.
,
Liu
,
S. S.
,
Zhao
,
G. L.
, and
Zhang
,
M.
,
2022
, “
Fabrication of In Situ TiN Ceramic Particle Reinforced High Entropy Alloy Composite Coatings by Laser Cladding Processing
,”
ASME J. Tribol.
,
144
(
3
), p.
031402
.
16.
Wang
,
Y.
,
Yue
,
W.
,
Kang
,
J.
,
Zhu
,
L.
,
Fu
,
Z.
, and
Wang
,
C.
,
2019
, “
Effect of Surface Nanocrystallization Pretreatment on the Tribological Properties of Plasma Nitrided AISI 316 L Stainless Steel Under Boundary Lubrication
,”
ASME J. Tribol.
,
141
(
4
), p.
041202
.
17.
Ta
,
T.-N.
,
Horng
,
J.-H.
, and
Hwang
,
Y.-L.
,
2022
, “
Correlation Between Tribological and Vibration Behaviors in Sliding Lubricated Contacts
,”
ASME J. Tribol.
,
144
(
11
), p.
111603
.
18.
Parr
,
J. G.
, and
Hanson
,
A.
,
1965
,
An Introduction to Stainless Steel
,
American Society for Metals
,
Metals Park, OH
,
147
.
19.
Erickson
,
A. R.
, and
Wiech
,
R. E.
,
1994
,
Metals Handbook
,
ASM Federation
,
Materials Park, OH
.
20.
Peruzzo
,
M.
,
Serafini
,
F. L.
,
Ordoñez
,
M. F. C.
,
Souza
,
R. M.
, and
Farias
,
M. C. M.
,
2019
, “
Reciprocating Sliding Wear of the Sintered 316L Stainless Steel With Boron Additions
,”
Wear
,
422–423
, pp.
108
118
.
21.
Kennedy
,
F. E.
,
Ye
,
Y.
,
Baker
,
I.
,
White
,
R. R.
,
Barry
,
R. L.
,
Tang
,
A. Y.
, and
Song
,
M.
,
2022
, “
Development of a New Cryogenic Tribotester and Its Application to the Study of Cryogenic Wear of AISI 316 Stainless Steel
,”
Wear
,
496–497
, p.
204309
.
22.
Larbalestier
,
D. C.
, and
King
,
H. W.
,
1973
, “
Austenitic Stainless Steels at Cryogenic Temperatures 1-Structural Stability and Magnetic Properties
,”
Cryogenics (Guildf)
,
13
(
3
), pp.
160
168
.
23.
Hsu
,
K. L.
,
Ahn
,
T. M.
, and
Rigney
,
D. A.
,
1980
, “
Friction, Wear and Microstructure of Unlubricated Austenitic Stainless Steels
,”
Wear
,
60
(
1
), pp.
13
37
.
24.
Duraisamy
,
R.
,
Kumar
,
S. M.
,
Kannan
,
A. R.
,
Shanmugam
,
N. S.
,
Sankaranarayanasamy
,
K.
, and
Ramesh
,
M. R.
,
2020
, “
Tribological Performance of Wire Arc Additive Manufactured 347 Austenitic Stainless Steel Under Unlubricated Conditions at Elevated Temperatures
,”
J. Manuf. Process.
,
56
, pp.
306
321
.
25.
Chakkravarthy
,
V.
, and
Jerome
,
S.
,
2020
, “
Fabrication of Preferentially Oriented Al4043 Alloy and Its Wear Anisotropy
,”
Mater. Lett.
,
280
, p.
128578
.
26.
Haden
,
C. V.
,
Zeng
,
G.
,
Carter
,
F. M.
,
Ruhl
,
C.
,
Krick
,
B. A.
, and
Harlow
,
D. G.
,
2017
, “
Wire and Arc Additive Manufactured Steel: Tensile and Wear Properties
,”
Addit. Manuf.
,
16
, pp.
115
123
.
27.
Brin
,
C.
,
Rivière
,
J. P.
,
Eymery
,
J. P.
, and
Villain
,
J. P.
,
2001
, “
Structural Characterization of Wear Debris Produced During Friction Between Two Austenitic Stainless Steel Antagonists
,”
Tribol. Lett.
,
11
(
2
), pp.
127
132
.
28.
Suryakumar
,
S.
,
Karunakaran
,
K. P.
,
Chandrasekhar
,
U.
, and
Somashekara
,
M. A.
,
2013
, “
A Study of the Mechanical Properties of Objects Built Through Weld-Deposition
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
227
(
8
), pp.
1138
1147
.
29.
Straffelini
,
G.
,
Molinari
,
A.
, and
Trabucco
,
D.
,
2002
, “
Sliding Wear of Austenitic and Austenitic-Ferritic Stainless Steels
,”
Metall. Mater. Trans. A
,
33
(
3
), pp.
613
624
.
30.
Liu
,
R.
, and
Li
,
D. Y.
,
2000
, “
Experimental Studies on Tribological Properties of Pseudoelastic TiNi Alloy With Comparison to Stainless Steel 304
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
31
(
11
), pp.
2773
2783
.
31.
Yang
,
Z. Y.
,
Naylor
,
M. G. S.
, and
Rigney
,
D. A.
,
1985
, “
Sliding Wear of 304 and 310 Stainless Steels
,”
Wear
,
105
(
1
), pp.
73
86
.
32.
Marshall
,
P.
,
1984
,
Austenitic Stainless Steels: Microstructure and Mechanical Properties
,
Springer Science & Business Media
,
New York
.
33.
Stachowiak
,
G. W.
, and
Batchelor
,
A. W.
,
2013
,
Engineering Tribology
,
Butterworth-Heinemann
,
Waltham, MA
.
34.
Wang
,
Q.
,
Zhang
,
P. Z.
,
Wei
,
D. B.
,
Chen
,
X. H.
,
Wang
,
R. N.
,
Wang
,
H. Y.
, and
Feng
,
K. T.
,
2013
, “
Microstructure and Sliding Wear Behavior of Pure Titanium Surface Modified by Double-Glow Plasma Surface Alloying With Nb
,”
Mater. Des.
,
52
, pp.
265
273
.
35.
Abdulaziz
,
A. L.-A. M. R.
,
2005
,
Mechanical Behavior and Structure of Passive Films On
,
Washington State University
,
Pullman, WA
.
36.
Washko
,
S. D.
, and
Aggen
,
G.
,
1990
,
ASM Handbook Volume 1, Properties and Selection: Irons, Steels, and High-Performance Alloys
,
ASM International
,
Materials Park, OH
.
You do not currently have access to this content.