Abstract

The commutator and brush of the motor are often worn during operation. The wear of commutator—brushes is influenced by various factors: current density, material, sliding speed, contact force, temperature, and environmental humidity, especially by humid tropical climate conditions. This affects directly wear, long life, and the reliability of commutator—brushes. This paper presents the results of the electrical sliding wear behavior of the graphite brushes when the temperature, the humidity of the humid tropical environment, and current change. According to experimental planning, the studies were conducted on graphite brushes with three input factors: the temperature of 25 °C, 40 °C, and 55 °C, relative humidity (RH) of 51%, 75%, and 99%, and current 5 A, 7.5 A, and 10 A. The results show that the specific wear-rate Ws increases when relative humidity, temperature, and current increase. When the brush works in extreme conditions, the specific wear-rate Ws will reach the maximum value and equal to about 5.37 times the Ws value in the best conditions in this experiment.

References

1.
Holm
,
R.
, and
Holm
,
E.
,
1958
,
Electric Contacts Handbook
,
Springer
,
Berlin
.
2.
Dowson
,
D.
,
1998
,
History of Tribology
, 2nd ed.,
Professional Engineering Publishing
,
London
.
3.
Taylor
,
C. M.
,
Childs
,
T. H. C.
,
Berthier
,
Y.
,
Flamand
,
L.
,
Dalmaz
,
G.
,
Dowson
,
D.
,
Lubrecht
,
A.
, and
Georges
,
J. M.
,
1996
,
The Third Body Concept: Interpretation of Tribological Phenomena
,
Elsevier Science
,
France
, September 11.
4.
Fillot
,
N.
,
Iordanoff
,
I.
, and
Berthier
,
Y.
,
2007
, “
Wear Modeling and the Third Body Concept
,”
Wear
,
262
(
7–8
), pp.
949
957
.
5.
Deeva
,
V.
, and
Slobodyan
,
S.
,
2017
, “
Influence оf Gravity and Thermodynamics on the Sliding Electrical Cоntасt
,”
Tribol. Int.
,
105
, pp.
299
303
.
6.
Romanishina
,
S. A.
,
Katyuk
,
D. Y.
,
Deeva
,
V. S.
, and
Slobodyan
,
S. M.
,
2015
, “
Dynamics Layer of the Sliding Contact Collector Elements
,”
Proceedings of IEEE 35th International Conference
,
Kyiv, Ukraine
,
Apr. 21–24
, pp.
116
118
.
7.
Serafinska
,
A.
,
Hassoun
,
N.
, and
Kaliske
,
M.
,
2016
, “
Numerical Optimization of Wear Performance–Utilizing a Metamodel Based Friction Law
,”
Comput. Struct.
,
165
(
C
), pp.
10
23
.
8.
Godet
,
M.
,
1984
, “
Third Body Approach: A Mechanical View of Wear
,”
Wear
,
100
(
3
), pp.
437
452
.
9.
Godet
,
M.
,
1990
, “
Third Body in Tribology
,”
Wear
,
136
(
1
), pp.
29
45
.
10.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing Offlat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
11.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1951
, “
The Friction and Lubrication of Solids
,”
Am. J. Phys.
,
19
(
7
), p.
428
.
12.
Meyer
,
E.
,
Overney
,
R. M.
,
Dransfeld
,
K.
, and
Gyalog
,
T.
,
1998
,
Nanoscience: Friction and Rheology on the Nanometer Scale
,
World Scientific
,
Singapore
, pp.
29
97
.
13.
Williams
,
J. A.
,
1996
,
“Engineering Tribology”
,
Oxford University Press Inc.
,
Oxford
, pp.
475
524
.
14.
McClelland
,
G. M.
,
1989
, “
Friction at Weakly Interacting Interfaces
,”
Mater. Sci.
,
17
, pp.
1
16
.
15.
Rabinowicz
,
E.
,
2013
,
Friction and Wear of Materials
, 2nd ed.,
Wiley
,
New York
.
16.
Persson
,
B. N. J.
,
2000
,
Sliding Friction: Physical Principles and Applications
,
Springer-Verlag
,
Berlin
.
17.
Shin
,
W.-G.
, and
Lee
,
S.-H.
,
2010
, “
An Analysis of the Main Factors on the Wear of Brushes for Automotive Small Brush-Type DC Motor
,”
J. Mech. Sci. Technol.
,
24
(
1
), pp.
37
41
.
18.
Zhou
,
Y.
,
Du
,
M.
, and
Zuo
,
X.
,
2022
, “
Influence of Electric Current on the Temperature Rise and Wear Mechanism of Copper–Graphite Current-Carrying Friction Pair
,”
ASME J. Tribol.
,
144
(
10
), p.
101701
.
19.
Lin
,
J.-W.
, and
Chang
,
H.-C.
,
2011
, “
Measurement of Friction Surface and Wear Rate Between a Carbon Graphite Brush and a Copper Ring
,”
Tribol. Trans.
,
54
(
6
), pp.
887
894
.
20.
Du
,
S. M.
,
Zhao
,
F.
, and
Zhang
,
Y. Z.
,
2012
, “
Friction and Wear Behavior of Copper-Graphite Composite Material in High-Speed Sliding With Current
,”
Adv. Mater. Res.
,
487
, pp.
411
415
.
21.
Grandin
,
M.
, and
Wiklund
,
U.
,
2018
, “
Wear Phenomena and Tribofilm Formation of Copper/Copper-Graphite Sliding Electrical Contact Materials
,”
Wear
,
398–399
, pp.
227
235
.
22.
Shin
,
W.-G.
,
Song
,
Y.-S.
, and
Seo
,
Y.-K.
,
2012
, “
Correlation Analysis of Brush Temperature in Brush-Type DC Motor for Predicting Motor Life
,”
J. Mech. Sci. Technol.
,
26
(
7
), pp.
2151
2154
.
23.
Yasar
,
I.
,
Canakci
,
A.
, and
Arslan
,
F.
,
2007
, “
The Effect of Brush Spring Pressure on the Wear Behaviour of Copper–Graphite Brushes With Electrical Current
,”
Tribol. Int.
,
40
(
9
), pp.
1381
1386
.
24.
Zhao
,
H.
,
Feng
,
Y.
,
Zhou
,
Z.
,
Qian
,
G.
,
Zhang
,
J.
,
Huang
,
X.
, and
Zhang
,
X.
,
2020
, “
Effect of Electrical Current Density, Apparent Contact Pressure, and Sliding Velocity on the Electrical Sliding Wear Behavior of Cu–Ti3AlC2 Composites
,”
Wear
,
444–445
, p.
203156
.
25.
Takahiro
,
U. E. N. O.
, and
Koichiro
,
S. A. W. A.
,
2000
, “
An Influence of Atmospheric Humidity and Temperature on Brush Wear of Sliding Contact
,”
IEICE Trans. Electron.
,
E83C
(
9
), pp.
1395
1401
.
26.
Turel
,
A.
,
Slavič
,
J.
, and
Boltežar
,
M.
,
2017
, “
Electrical Contact Resistance and Wear of a Dynamically Excited Metal–Graphite Brush
,”
Adv. Mech. Eng.
,
9
(
3
), pp.
1
8
.
27.
Hu
,
Z. L.
,
Chen
,
Z. H.
, and
Xia
,
J. T.
,
2008
, “
Study on Surface Film in the Wear of Electrographite Brushes Against Copper Commutators for Variable Current and Humidity
,”
Wear
,
264
(
1–2
), pp.
11
17
.
28.
Lancaster
,
K.
,
1990
, “
A Review of the Influence of Environmental Humidity and Water on Friction, Lubrication and Wear
,”
Tribol. Int.
,
23
(
6
), pp.
371
389
.
29.
Tuan
,
N. A.
,
Doan Y
,
N.
,
Van Hung
,
P.
, and
Thai
,
N. N.
,
1993
, “
Wear of Material in Humid—Tropical Conditions
,”
Wear
,
162–164
(
part B
), pp.
1066
1067
.
30.
Tuan
,
N. A.
, and
Van Hung
,
P.
,
2000
, “
Vietnam Tropical Climate Parameters Influence the Wear of Cast Iron
,”
International Symposium on High Performance of Tribosystem
,
South Korea
,
May 26–27
, pp.
84
88
.
You do not currently have access to this content.