Abstract

The performance of magnetorheological (MR) brakes is dependent on the MR characteristics of the braking fluid, working parameters, and magnetic fields. Due to the size limitations, it is quite difficult to use large-sized electromagnet for a high magnetic field inside an MR brake and thus working parameters indirectly affect the MR properties of MR fluid. Again, MR fluids show thermal thinning with working temperature. Therefore, in the present study, MR fluids that have stable MR properties at high temperatures and can provide better braking torque at low magnetic fields are prepared. To improve the MR properties at high temperature, multi-walled carbon nanotubes (MWCNTs) which have high thermal conductivity are used as additives, and initially, three MR fluids are synthesized by varying MWCNT fractions. The MR properties of these fluids are examined and plotted using magnetorheometer. The effective fraction of MWCNTs at which MR fluid has stable MR properties with temperature is identified. It is found that MR fluid which consists of 0.25% fractions of MWCNTs has large yield strength but only at high magnetic fields. To improve its MR properties at a lower magnetic field, 0.5% fraction of fumed silica is mixed with 0.25% fractions of MWCNTs. Then, a fabricated MR disc brake is characterized using those prepared magnetorheological fluids (MRFs). The braking torque of MRFs at different speeds is presented and compared. It is found that approximately 26% more braking torque is offered by fumed silica + MWCNTs-based MR fluid in comparison to other MRFs at 1200 RPM.

References

1.
Rabinow
,
J.
,
1948
, “
The Magnetic Fluid Clutch
,”
Electr. Eng.
,
67
(
12
), pp.
1167
1167
.
2.
Samouhos
,
S.
, and
McKinley
,
G.
,
2007
,
Carbon Nanotube–Magnetite Composites, With Applications to Developing Unique Magnetorheological Fluids
,
ASME J. Fluids Eng.
,
129
(
4
), pp.
429
437
.
3.
Kim
,
M. W.
,
Han
,
W. J.
,
Kim
,
Y. H.
, and
Choi
,
H. J.
,
2016
, “
Effect of a Hard Magnetic Particle Additive on Rheological Characteristics of Microspherical Carbonyl Iron-Based Magnetorheological Fluid
,”
Colloids Surf., A
,
506
, pp.
812
820
.
4.
Promislow
,
J. H.
,
Gast
,
A. P.
, and
Fermigier
,
M.
,
1995
, “
Aggregation Kinetics of Paramagnetic Colloidal Particles
,”
J. Chem. Phys.
,
102
(
13
), pp.
5492
5498
.
5.
Sarkar
,
C.
, and
Hirani
,
H.
,
2015
, “
Development of a Magnetorheological Brake With a Slotted Disc
,”
Proc. Inst. Mech. Eng., Part D
,
229
(
14
), pp.
1907
1924
.
6.
Acharya
,
S.
,
Tak
,
R. S. S.
,
Singh
,
S. B.
, and
Kumar
,
H.
,
2021
, “
Characterization of Magnetorheological Brake Utilizing Synthesized and Commercial Fluids
,”
Mater. Today Proc.
,
46
, pp.
9419
9424
.
7.
Hu
,
G.
,
Wu
,
L.
, and
Li
,
L.
,
2021
, “
Torque Characteristics Analysis of a Magnetorheological Brake With Double Brake Disc
,”
Actuators
,
10
(
2
), p.
23
.
8.
Thakur
,
M. K.
, and
Sarkar
,
C.
,
2022
, “
Design and Testing of a Conventional Clutch Filled With Magnetorheological Fluid Activated by a Flexible Permanent Magnet at Low Compressive Load: Numerical Simulation and Experimental Study
,”
ASME J. Tribol.
,
144
(
2
), p.
021205
.
9.
Kumar
,
A.
, and
Sharma
,
S. C.
,
2022
, “
Ferrofluid Lubrication of Optimized Spiral-Grooved Conical Hybrid Journal Bearing Using Current-Carrying Wire Model
,”
ASME J. Tribol.
,
144
(
4
), p.
041801
.
10.
Zakaria
,
K.
,
Sirwah
,
M. A.
, and
Fakharany
,
M.
,
2011
, “
Theoretical Study of Static and Dynamic Characteristics for Eccentric Cylinders Lubricated With Ferrofluid
,”
ASME J. Tribol.
,
133
(
2
), p.
021701
.
11.
Song
,
W.
,
Wang
,
S.
,
Choi
,
S. B.
,
Wang
,
N.
, and
Xiu
,
S.
,
2019
, “
Thermal and Tribological Characteristics of a Disc-Type Magnetorheological Brake Operated by the Shear Mode
,”
J. Intell. Mater. Syst. Struct.
,
30
(
5
), pp.
722
733
.
12.
Rabbani
,
Y.
,
Ashtiani
,
M.
, and
Hashemabadi
,
S. H.
,
2015
, “
An Experimental Study on the Effects of Temperature and Magnetic Field Strength on the Magnetorheological Fluid Stability and MR Effect
,”
Soft Matter
,
11
(
22
), pp.
4453
4460
.
13.
Wang
,
D.
,
Zi
,
B.
,
Zeng
,
Y.
,
Hou
,
Y.
, and
Meng
,
Q.
,
2014
, “
Temperature-Dependent Material Properties of the Components of Magnetorheological Fluids
,”
J. Mater. Sci.
,
49
(
24
), pp.
8459
8470
.
14.
Li
,
H.
,
Jönkkäri
,
I.
,
Sarlin
,
E.
, and
Chen
,
F.
,
2021
, “
Temperature Effects and Temperature-Dependent Constitutive Model of Magnetorheological Fluids
,”
Rheol. Acta
,
60
(
11
), pp.
719
728
.
15.
Ghaffari
,
A.
,
Hashemabadi
,
S. H.
, and
Ashtiani
,
M.
,
2015
, “
A Review on the Simulation and Modeling of Magnetorheological Fluids
,”
J. Intell. Mater. Syst. Struct.
,
26
(
8
), pp.
881
904
.
16.
Maurya
,
C. S.
, and
Sarkar
,
C.
,
2021
, “
Synthesis and Characterization of Novel Flake-Shaped Carbonyl Iron and Water-Based Magnetorheological Fluids Using Laponite and Oleic Acid With Enhanced Sedimentation Stability
,”
J. Intell. Mater. Syst. Struct.
,
32
(
14
), pp.
1624
1639
.
17.
Huang
,
Y.
,
Jiang
,
Y.
,
Yang
,
X.
, and
Xu
,
R.
,
2015
, “
Influence of Oleic and Lauric Acid on the Stability of Magnetorheological Fluids
,”
J. Magn.
,
20
(
3
), pp.
317
321
.
18.
Cheng
,
J.
,
Liu
,
K.
,
Zhang
,
Z.
,
Wei
,
Z.
,
Ma
,
Y.
, and
Lu
,
S.
,
2021
, “
Effect of Compound Surfactants Modified Carbonyl Iron on Magnetorheological Fluids
,”
J. Supercond. Novel Magn.
,
34
(
4
), pp.
1177
1183
.
19.
Aruna
,
M. N.
,
Rahman
,
M. R.
,
Joladarashi
,
S.
,
Kumar
,
H.
, and
Bhat
,
P. D.
,
2021
, “
Influence of Different Fumed Silica as Thixotropic Additive on Carbonyl Particles Magnetorheological Fluids for Sedimentation Effects
,”
J. Magn. Magn. Mater.
,
529
, p.
167910
.
20.
Kumar
,
S.
,
Sehgal
,
R.
,
Wani
,
M. F.
, and
Sharma
,
M. D.
,
2021
, “
Stabilization and Tribological Properties of Magnetorheological (MR) Fluids: A Review
,”
J. Magn. Magn. Mater.
,
538
, p.
168295
.
21.
Thakur
,
M. K.
, and
Sarkar
,
C.
,
2020
, “
Influence of Graphite Flakes on the Strength of Magnetorheological Fluids at High Temperature and Its Rheology
,”
IEEE Trans. Magn.
,
56
(
5
), pp.
1
10
.
22.
Kim
,
H.
,
Kim
,
S.
, and
Seo
,
Y.
,
2019
, “
High-Performance Magnetorheological Suspensions of Fe3O4-Deposited Carbon Nanotubes With Enhanced Stability
,”
MRS Adv.
,
4
(
3
), pp.
217
224
.
23.
Choi
,
J.
,
Nam
,
K. T.
,
Kim
,
S.
, and
Seo
,
Y.
,
2021
, “
Synergistic Effects of Nonmagnetic Carbon Nanotubes on the Performance and Stability of Magnetorheological Fluids Containing Carbon Nanotube-Co0. 4Fe0. 4Ni0. 2 Nanocomposite Particles
,”
Nano Lett.
,
21
(
12
), pp.
4973
4980
.
24.
Fang
,
F. F.
,
Liu
,
Y. D.
, and
Choi
,
H. J.
,
2012
, “
Carbon Nanotube Coated Magnetic Carbonyl Iron Microspheres Prepared by Solvent Casting Method and Their Magneto-responsive Characteristics
,”
Colloids Surf., A
,
412
, pp.
47
56
.
25.
Sarkar
,
C.
, and
Hirani
,
H.
,
2015
, “
Synthesis and Characterization of Nano-particles Based Magnetorheological Fluids for Brake
,”
Tribol.s Online
,
10
(
4
), pp.
282
294
.
26.
Gopinath
,
B.
,
Sathishkumar
,
G. K.
,
Karthik
,
P.
,
Charles
,
M. M.
,
Ashok
,
K. G.
,
Ibrahim
,
M.
, and
Akheel
,
M. M.
,
2021
, “
A Systematic Study of the Impact of Additives on Structural and Mechanical Properties of Magnetorheological Fluids
,”
Mater. Today Proc.
,
37
, pp.
1721
1728
.
27.
Kumar
,
H.
, and
Harsha
,
A. P.
,
2021
, “
Augmentation in Tribological Performance of Polyalphaolefins by COOH-Functionalized Multiwalled Carbon Nanotubes as an Additive in Boundary Lubrication Conditions
,”
ASME J. Tribol.
,
143
(
10
), p.
102202
.
28.
Kumbhar
,
B. K.
,
Patil
,
S. R.
, and
Sawant
,
S. M.
,
2015
, “
Synthesis and Characterization of Magneto-Rheological (MR) Fluids for MR Brake Application
,”
Eng. Sci. Technol.
,
18
(
3
), pp.
432
438
.
29.
Xu
,
J.
,
Li
,
J.
, and
Cao
,
J.
,
2018
, “
Effects of Fumed Silica Weight Fraction on Rheological Properties of Magnetorheological Polishing Fluids
,”
Colloid Polym. Sci.
,
296
(
7
), pp.
1145
1156
.
30.
Kharisov
,
B. I.
,
Dias
,
H. R.
,
Kharissova
,
O. V.
,
Vázquez
,
A.
,
Pena
,
Y.
, and
Gomez
,
I.
,
2014
, “
Solubilization, Dispersion and Stabilization of Magnetic Nanoparticles in Water and Non-aqueous Solvents: Recent Trends
,”
RSC Adv.
,
4
(
85
), pp.
45354
45381
.
31.
Wang
,
L. T.
,
Chen
,
Q.
,
Hong
,
R. Y.
, and
Kumar
,
M. R.
,
2015
, “
Preparation of Oleic Acid Modified Multi-walled Carbon Nanotubes for Polystyrene Matrix and Enhanced Properties by Solution Blending
,”
J. Mater. Sci.: Mater. Electron.
,
26
(
11
), pp.
8667
8675
.
32.
Quan
,
X.
,
Mo
,
J.
,
Huang
,
B.
,
Tang
,
B.
,
Ouyang
,
H.
, and
Zhou
,
Z.
,
2020
, “
Influence of the Friction Block Shape and Installation Angle of High-Speed Train Brakes on Brake Noise
,”
ASME J. Tribol.
,
142
(
3
), p.
031701
.
33.
Monreal
,
P.
,
Harrison
,
N.
,
Perez-Costarrosa
,
E.
,
Zugasti
,
M.
,
Madariaga
,
A.
, and
Clavería
,
I.
,
2022
, “
Full-Scale Dynamometer Tests of Composite Railway Brake Shoes: Effect of the Resin-Rubber Ratio on Friction Performance and Wear
,”
ASME J. Tribol.
,
144
(
6
), p.
061704
.
34.
Lee
,
J. Y.
,
Kwon
,
S. H.
, and
Choi
,
H. J.
,
2019
, “
Magnetorheological Characteristics of Carbonyl Iron Microparticles With Different Shapes
,”
Korea Aust. Rheol. J.
,
31
(
1
), pp.
41
47
.
35.
Ulicny
,
J. C.
,
Snavely
,
K. S.
,
Golden
,
M. A.
, and
Klingenberg
,
D. J.
,
2010
, “
Enhancing Magnetorheology With Nonmagnetizable Particles
,”
Appl. Phys. Lett.
,
96
(
23
), p.
231903
.
36.
Vardhaman
,
B. A.
,
Amarnath
,
M.
,
Ramkumar
,
J.
, and
Mondal
,
K.
,
2020
, “
Enhanced Tribological Performances of Zinc Oxide/MWCNTs Hybrid Nanomaterials as the Effective Lubricant Additive in Engine Oil
,”
Mater. Chem. Phys.
,
253
, p.
123447
.
37.
Shan
,
L.
,
Tian
,
Y.
,
Jiang
,
J.
,
Zhang
,
X.
, and
Meng
,
Y.
,
2015
, “
Effects of pH on Shear Thinning and Thickening Behaviors of Fumed Silica Suspensions
,”
Colloids Surf., A
,
464
, pp.
1
7
.
38.
Rwei
,
S. P.
,
Shiu
,
J. W.
,
Sasikumar
,
R.
, and
Hsueh
,
H. C.
,
2019
, “
Characterization and Preparation of Carbonyl Iron-Based High Magnetic Fluids Stabilized by the Addition of Fumed Silica
,”
J. Solid State Chem.
,
274
, pp.
308
314
.
You do not currently have access to this content.