Abstract

Finite element based analysis of full-stick contact between a functionally graded hemispherical asperity and a rigid flat is carried out under tangential loading. In the adopted gradation model, Young’s modulus and tangent modulus (considering bilinear isotropic hardening model) are varied according to an exponential function in the radial direction of the hemisphere. Under post-flattening tangential loading, the FGM hemispherical asperity contact is investigated for different values of gradation parameters. Different aspects of contact behavior, i.e., tangential and normal contact forces, contact area, contact pressure, etc. are investigated under the influence of varying gradation parameters. The evolution of stresses and deformation in the asperity are also studied for different gradation parameters.

References

1.
Vakis
,
A. I.
,
Yastrebov
,
V. A.
,
Scheibert
,
J.
,
Nicola
,
L.
,
Dini
,
D.
,
Minfray
,
C.
,
Almqvist
,
A.
, et al
,
2018
, “
Modeling and Simulation in Tribology Across Scales: An Overview
,”
Tribol. Int.
,
125
, pp.
169
199
.
2.
Cattaneo
,
C.
,
1938
, “
Sul Contatto Di Due Corpi Elastici: Distribuzione Locale Degli Sforzi
,”
Rend. Accad. Naz. Lincei
,
27
, pp.
342
348
.
3.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
(
3
), pp.
259
268
.
4.
Mindlin
,
R. D.
,
Mason
,
W. P.
,
Osmer
,
T. F.
, and
Deresiewicz
,
H.
,
1952
, “
Effects of an Oscillating Tangential Force on the Contact Surfaces of Elastic Spheres
,”
Proceedings of the 1st US National Congress of Applied Mechanics
,
Illinois Institute of Technology, Chicago, IL
,
June 11–16, 1951
, pp.
203
208
.
5.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
1953
, “
Elastic Spheres in Contact Under Varying Oblique Forces
,”
ASME J. Appl. Mech.
,
20
(
3
), pp.
327
344
.
6.
Johnson
,
K. L.
,
1955
, “
Surface Interaction Between Elastically Loaded Bodies Under Tangential Forces
,”
Proc. R. Soc. A: Math. Phys. Sci.
,
230
(
1183
), pp.
531
548
.
7.
Ciavarella
,
M.
,
1998
, “
The Generalized Cattaneo Partial Slip Plane Contact Problem. I—Theory
,”
Int. J. Solids Struct.
,
35
(
18
), pp.
2349
2362
.
8.
Ciavarella
,
M.
,
1998
, “
The Generalized Cattaneo Partial Slip Plane Contact Problem. II—Examples
,”
Int. J. Solids Struct.
,
35
(
18
), pp.
2363
2378
.
9.
Olofsson
,
U.
, and
Hagman
,
L.
,
1997
, “
A Model for Micro-Slip Between Flat Surfaces Based on Deformation of Ellipsoidal Elastic Bodies
,”
Tribol. Int.
,
30
(
8
), pp.
599
603
.
10.
Jäger
,
J.
,
2003
, “
Properties of Equal Bodies in Contact With Friction
,”
Int. J. Solids Struct.
,
40
(
19
), pp.
5051
5061
.
11.
Dini
,
D.
,
Sackfield
,
A.
, and
Hills
,
D. A.
,
2008
, “
An Axi-Symmetric Hertzian Contact Subject to Cyclic Shear and Severe Wear
,”
Wear
,
265
(
11–12
), pp.
1918
1922
.
12.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1950
,
The Friction and Lubrication of Solids
,
Clarendon Press
,
Oxford
.
13.
Tabor
,
D.
,
1959
, “
Junction Growth in Metallic Friction: The Role of Combined Stresses and Surface Contamination
,”
Proc. R. Soc. A: Math. Phys. Sci.
,
251
(
1266
), pp.
378
393
.
14.
Hamilton
,
G. M.
, and
Goodman
,
L. E.
,
1966
, “
The Stress Field Created by a Circular Sliding Contact
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
371
376
.
15.
Golden
,
J. M.
,
1977
, “
The Actual Contact Area of Moving Surfaces
,”
Wear
,
42
(
1
), pp.
157
162
.
16.
Hamilton
,
G. M.
,
1983
, “
Explicit Equations for the Stresses Beneath a Sliding Spherical Contact
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
197
(
1
), pp.
53
59
.
17.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1988
, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
,
110
(
1
), pp.
57
63
.
18.
Johnson
,
K. L.
,
1996
, “
Continuum Mechanics Modeling of Adhesion and Friction
,”
Langmuir
,
12
(
19
), pp.
4510
4513
.
19.
Johnson
,
K. L.
,
1997
, “
Adhesion and Friction Between a Smooth Elastic Spherical Asperity and a Plane Surface
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
453
(
1956
), pp.
163
179
.
20.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact
,”
ASME J. Tribol.
,
125
(
3
), pp.
499
506
.
21.
Kral
,
E. R.
, and
Komvopoulos
,
K.
,
1996
, “
Three-Dimensional Finite Element Analysis of Surface Deformation and Stresses in an Elastic-Plastic Layered Medium Subjected to Indentation and Sliding Contact Loading
,”
ASME J. Appl. Mech.
,
63
(
2
), pp.
365
375
.
22.
Tian
,
H.
, and
Saka
,
N.
,
1991
, “
Finite Element Analysis of an Elastic-Plastic Two-Layer Half-Space: Sliding Contact
,”
Wear
,
148
(
2
), pp.
261
285
.
23.
Anderson
,
I. A.
, and
Collins
,
I. F.
,
1995
, “
Plane Strain Stress Distributions in Discrete and Blended Coated Solids Under Normal and Sliding Contact
,”
Wear
,
185
(
1–2
), pp.
23
33
.
24.
Faulkner
,
A.
, and
Arnell
,
R. D.
,
2000
, “
The Development of a Finite Element Model to Simulate the Sliding Interaction Between Two, Three-Dimensional, Elastoplastic, Hemispherical Asperities
,”
Wear
,
242
(
1–2
), pp.
114
122
.
25.
Zhang
,
H.
,
Chang
,
L.
,
Webster
,
M. N.
, and
Jackson
,
A.
,
2003
, “
Effects of Friction on the Contact and Deformation Behavior in Sliding Asperity Contacts
,”
Tribol. Trans.
,
46
(
4
), pp.
514
521
.
26.
Jackson
,
R. L.
,
Duvvuru
,
R. S.
,
Meghani
,
H.
, and
Mahajan
,
M.
,
2007
, “
An Analysis of Elasto-Plastic Sliding Spherical Asperity Interaction
,”
Wear
,
262
(
1–2
), pp.
210
219
.
27.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2010
, “
Physics-Based Modeling for Partial Slip Behavior of Spherical Contacts
,”
Int. J. Solids Struct.
,
47
(
18–19
), pp.
2554
2567
.
28.
Wu
,
A.
,
Shi
,
X.
, and
Polycarpou
,
A. A.
,
2012
, “
An Elastic-Plastic Spherical Contact Model Under Combined Normal and Tangential Loading
,”
ASME J. Appl. Mech.
,
79
(
5
), p.
051001
.
29.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2006
, “
Elastic–Plastic Spherical Contact Under Combined Normal and Tangential Loading in Full Stick
,”
Tribol. Lett.
,
25
(
1
), pp.
61
70
.
30.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2007
, “
A Model for Junction Growth of a Spherical Contact Under Full Stick Condition
,”
ASME J. Tribol.
,
129
(
4
), pp.
783
790
.
31.
Ovcharenko
,
A.
,
Halperin
,
G.
, and
Etsion
,
I.
,
2008
, “
In Situ and Real-Time Optical Investigation of Junction Growth in Spherical Elastic-Plastic Contact
,”
Wear
,
264
(
11–12
), pp.
1043
1050
.
32.
Ovcharenko
,
A.
,
Halperin
,
G.
, and
Etsion
,
I.
,
2008
, “
Experimental Study of Adhesive Static Friction in a Spherical Elastic-Plastic Contact
,”
ASME J. Tribol.
,
130
(
2
), p.
021401
.
33.
Zolotarevskiy
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2011
, “
The Evolution of Static Friction for Elastic-Plastic Spherical Contact in Pre-Sliding
,”
ASME J. Tribol.
,
133
(
3
), p.
034502
.
34.
Salib
,
J.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2008
, “
A Model for Potential Adhesive Wear Particle at Sliding Inception of a Spherical Contact
,”
Tribol. Lett.
,
30
(
3
), pp.
225
233
.
35.
Wu
,
A.
, and
Shi
,
X.
,
2013
, “
Numerical Investigation of Adhesive Wear and Static Friction Based on the Ductile Fracture of Junction
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041032
.
36.
Shankar
,
S.
, and
Mayuram
,
M. M.
,
2008
, “
Sliding Interaction and Wear Studies Between Two Hemispherical Asperities Based on Finite Element Approach
,”
Int. J. Surf. Sci. Eng.
,
2
(
1–2
), pp.
71
83
.
37.
Yang
,
H.
, and
Green
,
I.
,
2022
, “
An Analytical Solution for the Initiation and Early Progression of Fretting Wear in Spherical Contacts
,”
ASME J. Tribol.
,
144
(
4
), p.
041501
.
38.
Yang
,
H.
, and
Green
,
I.
,
2019
, “
Analysis of Displacement-Controlled Fretting Between a Hemisphere and a Flat Block in Elasto-Plastic Contacts
,”
ASME J. Tribol.
,
141
(
3
), p.
031401
.
39.
Zhao
,
B.
,
Zhang
,
S.
,
Lu
,
X.
, and
Dong
,
Q.
,
2017
, “
Cyclic Tangential Loading of a Power-Law Hardening Elastic–Plastic Spherical Contact in Pre-Sliding Stage
,”
Int. J. Mech. Sci.
,
128–129
, pp.
652
658
.
40.
Zhang
,
H.
, and
Etsion
,
I.
,
2021
, “
Evolution of Adhesive Wear and Friction in Elastic-Plastic Spherical Contact
,”
Wear
,
478
, p.
203915
.
41.
Zhang
,
H.
, and
Etsion
,
I.
,
2022
, “
An Advanced Efficient Model for Adhesive Wear in Elastic—Plastic Spherical Contact
,”
Friction
,
10
(
8
), pp.
1276
1284
.
42.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures, and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
43.
Hillerborg
,
A.
,
Modéer
,
M.
, and
Petersson
,
P. E.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
,
6
(
6
), pp.
773
781
.
44.
Suresh
,
S.
,
2001
, “
Graded Materials for Resistance to Contact Deformation and Damage
,”
Science
,
292
(
5526
), pp.
2447
2451
.
45.
Willert
,
E.
,
Dmitriev
,
A. I.
,
Psakhie
,
S. G.
, and
Popov
,
V. L.
,
2019
, “
Effect of Elastic Grading on Fretting Wear
,”
Sci. Rep.
,
9
(
1
), pp.
1
8
.
46.
Suresh
,
S.
,
Olsson
,
M.
,
Giannakopoulos
,
A. E.
,
Padture
,
N. P.
, and
Jitcharoen
,
J.
,
1999
, “
Engineering the Resistance to Sliding-Contact Damage Through Controlled Gradients in Elastic Properties at Contact Surfaces
,”
Acta Mater.
,
47
(
14
), pp.
3915
3926
.
47.
Peng
,
J.
,
Wang
,
Z.
,
Chen
,
P.
,
Gao
,
F.
,
Chen
,
Z.
, and
Yang
,
Y.
,
2019
, “
Surface Contact Behavior of an Arbitrarily Oriented Graded Substrate With a Spatially Varying Friction Coefficient
,”
Int. J. Mech. Sci.
,
151
, pp.
410
423
.
48.
Guler
,
M. A.
,
Ozturk
,
M.
, and
Kucuksucu
,
A.
,
2016
, “
The Frictional Contact Problem of a Rigid Stamp Sliding Over a Graded Medium
,”
Key Eng. Mater.
,
681
, pp.
155
174
.
49.
Güler
,
M. A.
,
Kucuksucu
,
A.
,
Yilmaz
,
K. B.
, and
Yildirim
,
B.
,
2017
, “
On the Analytical and Finite Element Solution of Plane Contact Problem of a Rigid Cylindrical Punch Sliding Over a Functionally Graded Orthotropic Medium
,”
Int. J. Mech. Sci.
,
120
, pp.
12
29
.
50.
Chen
,
P.
,
Chen
,
S.
, and
Peng
,
J.
,
2015
, “
Sliding Contact Between a Cylindrical Punch and a Graded Half-Plane With an Arbitrary Gradient Direction
,”
ASME J. Appl. Mech.
,
82
(
4
), p.
041008
.
51.
Alinia
,
Y.
,
Beheshti
,
A.
,
Guler
,
M. A.
,
El-Borgi
,
S.
, and
Polycarpou
,
A. A.
,
2016
, “
Sliding Contact Analysis of Functionally Graded Coating/Substrate System
,”
Mech. Mater.
,
94
, pp.
142
155
.
52.
Balci
,
M. N.
, and
Dag
,
S.
,
2020
, “
Moving Contact Problems Involving a Rigid Punch and a Functionally Graded Coating
,”
Appl. Math. Modell.
,
81
, pp.
855
886
.
53.
Jobin
,
K. J.
,
Abhilash
,
M. N.
, and
Murthy
,
H.
,
2017
, “
A Simplified Analysis of 2D Sliding Frictional Contact Between Rigid Indenters and FGM Coated Substrates
,”
Tribol. Int.
,
108
, pp.
174
185
.
54.
Guler
,
M. A.
, and
Erdogan
,
F.
,
2007
, “
The Frictional Sliding Contact Problems of Rigid Parabolic and Cylindrical Stamps on Graded Coatings
,”
Int. J. Mech. Sci.
,
49
(
2
), pp.
161
182
.
55.
Prasad
,
A.
,
Dao
,
M.
, and
Suresh
,
S.
,
2009
, “
Steady-State Frictional Sliding Contact on Surfaces of Plastically Graded Materials
,”
Acta Mater.
,
57
(
2
), pp.
511
524
.
56.
Liu
,
T.
,
Wang
,
Y.
, and
Xing
,
Y.
,
2012
, “
Fretting Contact of Two Elastic Solids With Graded Coatings Under Torsion
,”
Int. J. Solids Struct.
,
49
(
10
), pp.
1283
1293
.
57.
Su
,
J.
,
Ke
,
L. L.
,
Wang
,
Y. S.
, and
Xiang
,
Y.
,
2017
, “
Axisymmetric Torsional Fretting Contact Between a Spherical Punch and an FGPM Coating
,”
Appl. Math. Modell.
,
52
, pp.
576
589
.
58.
Chen
,
X.
, and
Zhu
,
X.
,
2019
, “
Fretting Fatigue Analysis of FGM Coating Under Out-of-Phase Loadings
,”
Tribol. Int.
,
134
, pp.
165
177
.
59.
Jackson
,
R. L.
, and
Kogut
,
L.
,
2006
, “
A Comparison of Flattening and Indentation Approaches for Contact Mechanics Modeling of Single Asperity Contacts
,”
ASME J. Tribol.
,
128
(
1
), pp.
209
212
.
60.
Jana
,
T.
,
Mitra
,
A.
, and
Sahoo
,
P.
,
2020
, “
Unloading Analysis of Elastically and Plastically Graded Hemispherical Contact With Rigid Flat
,”
Tribol. Int.
,
142
, p.
105973
.
61.
Rabinowicz
,
E.
,
1995
,
Friction and Wear of Materials
, 2nd ed.,
Wiley
,
New York
.
62.
Chen
,
Z.
, and
Etsion
,
I.
,
2019
, “
Model for the Static Friction Coefficient in a Full Stick Elastic-Plastic Coated Spherical Contact
,”
Friction
,
7
(
6
), pp.
613
624
.
63.
Jana
,
T.
,
Mitra
,
A.
, and
Sahoo
,
P.
,
2021
, “
Loading–Unloading Contact Analysis of a Fractal Rough Surface With Functional Gradation
,”
Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl.
,
236
(
4
), pp.
891
914
.
64.
Suresh
,
S.
,
Giannakopoulos
,
A. E.
, and
Alcalá
,
J.
,
1997
, “
Spherical Indentation of Compositionally Graded Materials: Theory and Experiments
,”
Acta Mater.
,
45
(
4
), pp.
1307
1321
.
You do not currently have access to this content.