Abstract

The influence of annealing on the microstructure, mechanical and sliding wear characteristics of Ni-based alloys produced by spark plasma sintering (SPS) was investigated. As-sintered alloys had a lamellar-like microstructure consisting of (γ′)-FeNi3 and γ-(NiFe) phases blended together. Lower Co contents (i.e., 30, 35 wt%) led to the formation of poorly bonded coarse γ precipitate islands. Annealed Ni-5Fe-45Co alloy exhibited the most excellent wear performance with the lowest coefficients of friction (0.142 ± 0.05) and wear-rate (0.3 ± 0.02 × 10−4 mm3/Nm). Annealing resulted in alloys with good strength-ductility combinations due to appreciable γ′ precipitation enhancement.

References

1.
Zhuang
,
Y. X.
,
Xue
,
H. D.
,
Chen
,
Z. Y.
,
Hu
,
Z. Y.
, and
He
,
J. C.
,
2013
, “
Effect of Annealing Treatment on Microstructures and Mechanical Properties of FeCoNiCuAl High Entropy Alloys
,”
Mater. Sci. Eng. A
,
572
(
1
), pp.
30
35
.
2.
Ye
,
Y. F.
,
Wang
,
Q.
,
Lu
,
J.
,
Liu
,
C. T.
, and
Yang
,
Y.
,
2016
, “
High-Entropy Alloy: Challenges and Prospects
,”
Mater. Today
,
19
(
6)
, pp.
349
362
.
3.
Tsai
,
M.-H.
, and
Yeh
,
J.-W.
,
2014
, “
High-Entropy Alloys: A Critical Review
,”
Mater. Res. Lett.
,
2
(
3
), pp.
107
123
.
4.
Zhang
,
Y.
,
Zuo
,
T. T.
,
Tang
,
Z.
,
Gao
,
M. C.
,
Dahmen
,
K. A.
,
Liaw
,
P. K.
, and
Lu
,
Z. P.
,
2014
, “
Microstructures and Properties of High-Entropy Alloys
,”
Prog. Mater. Sci.
,
61
(
1
), pp.
1
93
.
5.
Li
,
P.
,
Wang
,
A.
, and
Liu
,
C. T.
,
2017
, “
A Ductile High Entropy Alloy With Attractive Magnetic Properties
,”
J. Alloys Compd.
,
694
(
1
), pp.
55
60
.
6.
Nene
,
S. S.
,
Frank
,
M.
,
Liu
,
K.
,
Sinha
,
S.
,
Mishra
,
R. S.
,
McWilliams
,
B. A.
, and
Cho
,
K. C.
,
2019
, “
Corrosion-Resistant High Entropy Alloy With High Strength and Ductility
,”
Scr. Mater.
,
166
(
1
), pp.
168
172
.
7.
Zhang
,
F.
,
Levine
,
L. E.
,
Allen
,
A. J.
,
Stoudt
,
M. R.
,
Lindwall
,
G.
,
Lass
,
E. A.
,
Williams
,
M. E.
,
Idell
,
Y.
, and
Campbell
,
C. E.
,
2018
, “
Effect of Heat Treatment on the Microstructural Evolution of a Nickel-Based Superalloy Additive-Manufactured by Laser Powder Bed Fusion
,”
Acta Mater.
,
152
(
6
), pp.
200
214
.
8.
Akca
,
E.
, and
Gürsel
,
A.
,
2015
, “
A Review on Superalloys and IN718 Nickel-Based INCONEL Superalloy
,”
PEN
,
3
(
1
), pp.
15
27
.
9.
Terzi
,
S.
,
Couturier
,
R.
,
Guétaz
,
L.
, and
Viguier
,
B.
,
2008
, “
Modelling the Plastic Deformation During High-Temperature Creep of a Powder-Metallurgy Coarse-Grained Superalloy
,”
Mater. Sci. Eng. A
,
483–484
(
1
), pp.
598
601
.
10.
Wang
,
B.
,
Zhang
,
J.
,
Huang
,
T.
,
Yang
,
W.
,
Su
,
H.
,
Li
,
Z.
,
Liu
,
L.
, and
Fu
,
H.
,
2016
, “
Effect of Co on Microstructural Stability of the Third Generation Ni-Based Single Crystal Superalloys
,”
J. Mater. Res.
,
31
(
9
), pp.
1328
1337
.
11.
Wei
,
D.
,
Li
,
X.
,
Heng
,
W.
,
Koizumi
,
Y.
,
He
,
F.
,
Choi
,
W. M.
,
Lee
,
B. J.
,
Kim
,
H. S.
,
Kato
,
H.
, and
Chiba
,
A.
,
2019
, “
Novel Co-Rich High Entropy Alloys With Superior Tensile Properties
,”
Mater. Res. Lett.
,
7
(
2
), pp.
82
88
.
12.
AL-Nafeay
,
R. H.
,
AL-Roubaiy
,
A. O.
, and
Omidvar
,
H.
,
2020
, “
Overview of Joining and Repairing Techniques of Ni-Based Superalloy for Industrial Gas Turbine Applications
,”
Mater. Sci. Eng.
,
1094
(
1
), p.
22
.
13.
Chu
,
H.-S.
,
Liu
,
K.-S.
, and
Yeh
,
J.-W.
,
2000
, “
An In Situ Composite of Al (Graphite, Al4C3) Produced by Reciprocating Extrusion
,”
Mater. Sci. Eng. A
,
277
(
1–2
), pp.
25
32
.
14.
Deaquino-Lara
,
R.
,
Soltani
,
N.
,
Bahrami
,
A.
,
Gutiérrez-Castañeda
,
E.
,
García-Sánchez
,
E.
, and
Hernandez-Rodríguez
,
M. A. L.
,
2015
, “
Tribological Characterization of Al7075–Graphite Composites Fabricated by Mechanical Alloying and Hot Extrusion
,”
Mater. Des.
,
67
(
1
), pp.
224
231
.
15.
Retima
,
M.
,
Bouyegh
,
S.
, and
Chadli
,
H.
,
2011
, “
Effect of the Heat Treatment on the Microstructural Evolution of the Nickel Based Superalloy
,”
Assoc. Metall. Eng. Serbia
,
17
(
2
), pp.
71
77
.
16.
Pike
,
L. M.
,
2008
, “
Development of a Fabricable Gamma-Prime (γ′) Strengthened Superalloy
,”
Proceedings of the International Symposium on Superalloys
,
Champion, PA
,
Sept. 14–18
, pp.
191
200
.
17.
Collins
,
D. M.
,
Conduit
,
B. D.
,
Stone
,
H. J.
,
Hardy
,
M. C.
,
Conduit
,
G. J.
, and
Mitchell
,
R. J.
,
2013
, “
Grain Growth Behavior During Near-γ′ Solvus Thermal Exposures in a Polycrystalline Nickel-Base Superalloy
,”
Acta Mater.
,
61
(
9
), pp.
3378
3391
.
18.
Zhao
,
X.
,
Dang
,
Y.
,
Yin
,
H.
,
Lu
,
J.
,
Yuan
,
Y.
,
Yang
,
Z.
,
Yan
,
J.
, and
Gu
,
Y.
,
2016
, “
Effect of Heat Treatment on the Microstructure of a Ni–Fe Based Superalloy for Advanced Ultra-Supercritical Power Plant Applications
,”
Prog. Nat. Sci.: Mater. Int.
,
26
(
2
), pp.
204
209
.
19.
Bopape
,
I. M. C.
,
Ogunmuyiwa
,
E. N.
,
Shongwe
,
M. B.
,
Mphasha
,
N. P.
, and
Ntholeng
,
N.
,
2021
, “
Effect of Co and Fe Contents on the Microstructure and Corrosion Behavior of Heat-Treated Ni-Fe-Co Superalloys in 3.5 wt% NaCl Aqueous Solution
,”
Int. J. Adv. Manuf. Technol.
,
119
(
1–2
), pp.
287
301
.
20.
Turchanin
,
M. A.
,
Dreval
,
L. A.
,
Abdulov
,
A. R.
, and
Agraval
,
P. G.
,
2011
, “
Mixing Enthalpies of Liquid Alloys and Thermodynamic Assessment of the Cu–Fe–Co System
,”
Powder Metall. Met. Ceram
,
50
(
1–2
), pp.
98
116
.
21.
Çam
,
G.
, and
Koçak
,
M.
,
1998
, “
Progress in Joining of Advanced Materials. Part 2: Joining of Metal Matrix Composites and Joining of Other Advanced Materials
,”
Sci. Technol. Weld. Join.
,
3
(
4
), pp.
159
175
.
22.
Rathi
,
A.
,
Meka
,
V. M.
, and
Jayaraman
,
T. V.
,
2019
, “
Synthesis of Nanocrystalline Equiatomic Nickel-Cobalt-Iron Alloy Powders by Mechanical Alloying and Their Structural and Magnetic Characterization
,”
J. Magn. Magn. Mater.
,
469
(
1
), pp.
467
482
.
23.
Zhen
,
J.
,
Zhu
,
S.
,
Cheng
,
J.
,
Li
,
M.
,
Lu
,
Y.
,
Qiao
,
Z.
, and
Yang
,
J.
,
2017
, “
Influence of Graphite Content on the Dry Sliding Behavior of Nickel Alloy Matrix Solid Lubricant Composites
,”
Tribol. Int.
,
114
(
1
), pp.
322
328
.
24.
Zhang
,
J.
,
Moslehy
,
F. A.
, and
Rice
,
S. L.
,
1991
, “
A Model for Friction in Quasi-Steady-State Sliding Part I. Derivation
,”
Wear
,
149
(
1–2
), pp.
1
12
.
25.
Patten
,
S. N.
,
1919
, “
The Genesis of Consciousness
,”
Monist
,
29
(
3
), pp.
432
447
.
26.
Cao
,
Y. G.
,
Yin
,
C. H.
,
Liang
,
Y. L.
, and
Tang
,
S. H.
,
2019
, “
Lowering the Coefficient of Martensite Steel by Forming a Self-Lubricating Layer in Dry Sliding Wear
,”
Mater. Res. Express.
,
6
(
5
), pp.
272
286
.
27.
Iakovakis
,
E.
,
Avcu
,
E.
,
Roy
,
M. J.
,
Gee
,
M.
, and
Matthews
,
A.
,
2021
, “
Dry Sliding Wear Behavior of Additive Manufactured CrC-Rich WC-Co Cemented Carbides
,”
Wear
,
487
, p.
204127
.
28.
Cui
,
G.
,
Li
,
F.
,
Bian
,
C.
,
Gao
,
G.
, and
Kou
,
Z.
,
2022
, “
High-Temperature Wear Behavior of CoCr Matrix Coatings Reinforced by Niobium Element From Room Temperature to 1000 °C
,”
ASME J. Tribol.
,
144
(
10
), p.
101705
.
29.
Guo
,
X.
,
Baker
,
I.
,
Kennedy
,
F. E.
, and
Song
,
M.
,
2020
, “
A Comparison of the Dry Sliding Wear Behavior of NiCoCr Medium Entropy Alloy With 316 Stainless Steel
,”
Mater. Charact.
,
160
(
1
), p.
110132
.
30.
Deshpande
,
P. K.
, and
Lin
,
R. Y.
,
2006
, “
Wear Resistance of WC Particle Reinforced Copper Matrix Composites and the Effect of Porosity
,”
Mater. Sci. Eng. A
,
418
(
1–2
), pp.
137
145
.
31.
Stott
,
F. H.
,
1998
, “
The Role of Oxidation in the Wear of Alloys
,”
Tribol. Int.
,
31
(
1–3
), pp.
61
71
.
32.
Joos
,
O.
,
Boher
,
C.
,
Vergne
,
C.
,
Gaspard
,
C.
,
Nylen
,
T.
, and
Rezai-Aria
,
F.
,
2007
, “
Assessment of Oxide Scales Influence on Wear Damage of HSM Work Rolls
,”
Wear
,
263
(
1–6
), pp.
198
206
.
33.
Campos-Silva
,
I.
,
Contla-Pacheco
,
A. D.
,
Figueroa-López
,
U.
,
Martínez-Trinidad
,
J.
,
Garduño-Alva
,
A.
, and
Ortega-Avilés
,
M.
,
2019
, “
Sliding Wear Resistance of Nickel Boride Layers on an Inconel 718 Superalloy
,”
Surf. Coat. Technol.
,
378
(
1
), p.
124862
.
34.
Mishra
,
S. B.
,
Chandra
,
K.
, and
Prakash
,
S.
,
2013
, “
Dry Sliding Wear Behavior of Nickel-, Iron- and Cobalt-Based Superalloys
,”
Tribol. - Mater. Surf. Interfaces
,
7
(
3
), pp.
122
128
.
35.
Rigney
,
D. A.
,
2000
, “
Transfer, Mixing and Associated Chemical and Mechanical Processes During the Sliding of Ductile Materials
,”
Wear
,
245
(
1–2
), pp.
1
9
.
36.
Wei
,
X.
,
Hua
,
M.
,
Xue
,
Z.
,
Gao
,
Z.
, and
Li
,
J.
,
2009
, “
Evolution of Friction-Induced Microstructure of SUS 304 Meta-Stable Austenitic Stainless Steel and Its Influence on Wear Behavior
,”
Wear
,
267
(
9–10
), pp.
1386
1392
.
37.
Gilroy
,
D.
, and
Mayne
,
J. E. O.
,
1965
, “
The Oxidation of Iron at Room Temperature
,”
Corros. Sci.
,
5
(
1
), pp.
55
58
.
38.
Stott
,
F. H.
,
Lin
,
D. S.
,
Wood
,
G. C.
, and
Stevenson
,
C. W.
,
1976
, “
The Tribological Behavior of Nickel and Nickel -Chromium Alloys at Temperatures From 20 to 800 C
,”
Wear
,
36
(
2
), pp.
147
174
.
39.
Johnson
,
B. J.
,
Kennedy
,
F. E.
, and
Baker
,
I.
,
1996
, “
Dry Sliding Wear of NiAl
,”
Wear
,
192
(
1–2
), pp.
241
247
.
40.
Ramırez-Ramırez
,
J. H.
,
Alvarado-Orozco
,
J. M.
,
Perez-Gonzalez
,
F. A.
,
Colas
,
R.
, and
Garza-Montes-de-Oca
,
N. F.
,
2019
, “
Influence of Heat Treatment on the Wear Behavior of a Haynes 282VR Nickel-Based Superalloy
,”
ASME J. Tribol.
,
141
(
2
), p.
041606
.
41.
Fox
,
G. R.
, and
Liang
,
H.
,
2010
, “
Wear Mode Comparison of High-Performance Inconel Alloys
,”
ASME J. Tribol.
,
132
(
2
), p.
021603
.
You do not currently have access to this content.