Abstract
The influence of annealing on the microstructure, mechanical and sliding wear characteristics of Ni-based alloys produced by spark plasma sintering (SPS) was investigated. As-sintered alloys had a lamellar-like microstructure consisting of (γ′)-FeNi3 and γ-(NiFe) phases blended together. Lower Co contents (i.e., 30, 35 wt%) led to the formation of poorly bonded coarse γ precipitate islands. Annealed Ni-5Fe-45Co alloy exhibited the most excellent wear performance with the lowest coefficients of friction (0.142 ± 0.05) and wear-rate (0.3 ± 0.02 × 10−4 mm3/Nm). Annealing resulted in alloys with good strength-ductility combinations due to appreciable γ′ precipitation enhancement.
Issue Section:
Friction and Wear
References
1.
Zhuang
, Y. X.
, Xue
, H. D.
, Chen
, Z. Y.
, Hu
, Z. Y.
, and He
, J. C.
, 2013
, “Effect of Annealing Treatment on Microstructures and Mechanical Properties of FeCoNiCuAl High Entropy Alloys
,” Mater. Sci. Eng. A
, 572
(1
), pp. 30
–35
. 2.
Ye
, Y. F.
, Wang
, Q.
, Lu
, J.
, Liu
, C. T.
, and Yang
, Y.
, 2016
, “High-Entropy Alloy: Challenges and Prospects
,” Mater. Today
, 19
(6)
, pp. 349
–362
. 3.
Tsai
, M.-H.
, and
Yeh
, J.-W.
, 2014
, “High-Entropy Alloys: A Critical Review
,” Mater. Res. Lett.
, 2
(3
), pp. 107
–123
. 4.
Zhang
, Y.
, Zuo
, T. T.
, Tang
, Z.
, Gao
, M. C.
, Dahmen
, K. A.
, Liaw
, P. K.
, and Lu
, Z. P.
, 2014
, “Microstructures and Properties of High-Entropy Alloys
,” Prog. Mater. Sci.
, 61
(1
), pp. 1
–93
. 5.
Li
, P.
, Wang
, A.
, and Liu
, C. T.
, 2017
, “A Ductile High Entropy Alloy With Attractive Magnetic Properties
,” J. Alloys Compd.
, 694
(1
), pp. 55
–60
. 6.
Nene
, S. S.
, Frank
, M.
, Liu
, K.
, Sinha
, S.
, Mishra
, R. S.
, McWilliams
, B. A.
, and Cho
, K. C.
, 2019
, “Corrosion-Resistant High Entropy Alloy With High Strength and Ductility
,” Scr. Mater.
, 166
(1
), pp. 168
–172
. 7.
Zhang
, F.
, Levine
, L. E.
, Allen
, A. J.
, Stoudt
, M. R.
, Lindwall
, G.
, Lass
, E. A.
, Williams
, M. E.
, Idell
, Y.
, and Campbell
, C. E.
, 2018
, “Effect of Heat Treatment on the Microstructural Evolution of a Nickel-Based Superalloy Additive-Manufactured by Laser Powder Bed Fusion
,” Acta Mater.
, 152
(6
), pp. 200
–214
. 8.
Akca
, E.
, and Gürsel
, A.
, 2015
, “A Review on Superalloys and IN718 Nickel-Based INCONEL Superalloy
,” PEN
, 3
(1
), pp. 15
–27
. 9.
Terzi
, S.
, Couturier
, R.
, Guétaz
, L.
, and Viguier
, B.
, 2008
, “Modelling the Plastic Deformation During High-Temperature Creep of a Powder-Metallurgy Coarse-Grained Superalloy
,” Mater. Sci. Eng. A
, 483–484
(1
), pp. 598
–601
. 10.
Wang
, B.
, Zhang
, J.
, Huang
, T.
, Yang
, W.
, Su
, H.
, Li
, Z.
, Liu
, L.
, and Fu
, H.
, 2016
, “Effect of Co on Microstructural Stability of the Third Generation Ni-Based Single Crystal Superalloys
,” J. Mater. Res.
, 31
(9
), pp. 1328
–1337
. 11.
Wei
, D.
, Li
, X.
, Heng
, W.
, Koizumi
, Y.
, He
, F.
, Choi
, W. M.
, Lee
, B. J.
, Kim
, H. S.
, Kato
, H.
, and Chiba
, A.
, 2019
, “Novel Co-Rich High Entropy Alloys With Superior Tensile Properties
,” Mater. Res. Lett.
, 7
(2
), pp. 82
–88
. 12.
AL-Nafeay
, R. H.
, AL-Roubaiy
, A. O.
, and Omidvar
, H.
, 2020
, “Overview of Joining and Repairing Techniques of Ni-Based Superalloy for Industrial Gas Turbine Applications
,” Mater. Sci. Eng.
, 1094
(1
), p. 22
. 13.
Chu
, H.-S.
, Liu
, K.-S.
, and Yeh
, J.-W.
, 2000
, “An In Situ Composite of Al (Graphite, Al4C3) Produced by Reciprocating Extrusion
,” Mater. Sci. Eng. A
, 277
(1–2
), pp. 25
–32
. 14.
Deaquino-Lara
, R.
, Soltani
, N.
, Bahrami
, A.
, Gutiérrez-Castañeda
, E.
, García-Sánchez
, E.
, and Hernandez-Rodríguez
, M. A. L.
, 2015
, “Tribological Characterization of Al7075–Graphite Composites Fabricated by Mechanical Alloying and Hot Extrusion
,” Mater. Des.
, 67
(1
), pp. 224
–231
. 15.
Retima
, M.
, Bouyegh
, S.
, and Chadli
, H.
, 2011
, “Effect of the Heat Treatment on the Microstructural Evolution of the Nickel Based Superalloy
,” Assoc. Metall. Eng. Serbia
, 17
(2
), pp. 71
–77
.16.
Pike
, L. M.
, 2008
, “Development of a Fabricable Gamma-Prime (γ′) Strengthened Superalloy
,” Proceedings of the International Symposium on Superalloys
, Champion, PA
, Sept. 14–18
, pp. 191
–200
. 17.
Collins
, D. M.
, Conduit
, B. D.
, Stone
, H. J.
, Hardy
, M. C.
, Conduit
, G. J.
, and Mitchell
, R. J.
, 2013
, “Grain Growth Behavior During Near-γ′ Solvus Thermal Exposures in a Polycrystalline Nickel-Base Superalloy
,” Acta Mater.
, 61
(9
), pp. 3378
–3391
. 18.
Zhao
, X.
, Dang
, Y.
, Yin
, H.
, Lu
, J.
, Yuan
, Y.
, Yang
, Z.
, Yan
, J.
, and Gu
, Y.
, 2016
, “Effect of Heat Treatment on the Microstructure of a Ni–Fe Based Superalloy for Advanced Ultra-Supercritical Power Plant Applications
,” Prog. Nat. Sci.: Mater. Int.
, 26
(2
), pp. 204
–209
. 19.
Bopape
, I. M. C.
, Ogunmuyiwa
, E. N.
, Shongwe
, M. B.
, Mphasha
, N. P.
, and Ntholeng
, N.
, 2021
, “Effect of Co and Fe Contents on the Microstructure and Corrosion Behavior of Heat-Treated Ni-Fe-Co Superalloys in 3.5 wt% NaCl Aqueous Solution
,” Int. J. Adv. Manuf. Technol.
, 119
(1–2
), pp. 287
–301
. 20.
Turchanin
, M. A.
, Dreval
, L. A.
, Abdulov
, A. R.
, and Agraval
, P. G.
, 2011
, “Mixing Enthalpies of Liquid Alloys and Thermodynamic Assessment of the Cu–Fe–Co System
,” Powder Metall. Met. Ceram
, 50
(1–2
), pp. 98
–116
. 21.
Çam
, G.
, and Koçak
, M.
, 1998
, “Progress in Joining of Advanced Materials. Part 2: Joining of Metal Matrix Composites and Joining of Other Advanced Materials
,” Sci. Technol. Weld. Join.
, 3
(4
), pp. 159
–175
. 22.
Rathi
, A.
, Meka
, V. M.
, and Jayaraman
, T. V.
, 2019
, “Synthesis of Nanocrystalline Equiatomic Nickel-Cobalt-Iron Alloy Powders by Mechanical Alloying and Their Structural and Magnetic Characterization
,” J. Magn. Magn. Mater.
, 469
(1
), pp. 467
–482
. 23.
Zhen
, J.
, Zhu
, S.
, Cheng
, J.
, Li
, M.
, Lu
, Y.
, Qiao
, Z.
, and Yang
, J.
, 2017
, “Influence of Graphite Content on the Dry Sliding Behavior of Nickel Alloy Matrix Solid Lubricant Composites
,” Tribol. Int.
, 114
(1
), pp. 322
–328
. 24.
Zhang
, J.
, Moslehy
, F. A.
, and Rice
, S. L.
, 1991
, “A Model for Friction in Quasi-Steady-State Sliding Part I. Derivation
,” Wear
, 149
(1–2
), pp. 1
–12
. 25.
Patten
, S. N.
, 1919
, “The Genesis of Consciousness
,” Monist
, 29
(3
), pp. 432
–447
. 26.
Cao
, Y. G.
, Yin
, C. H.
, Liang
, Y. L.
, and Tang
, S. H.
, 2019
, “Lowering the Coefficient of Martensite Steel by Forming a Self-Lubricating Layer in Dry Sliding Wear
,” Mater. Res. Express.
, 6
(5
), pp. 272
–286
. 27.
Iakovakis
, E.
, Avcu
, E.
, Roy
, M. J.
, Gee
, M.
, and Matthews
, A.
, 2021
, “Dry Sliding Wear Behavior of Additive Manufactured CrC-Rich WC-Co Cemented Carbides
,” Wear
, 487
, p. 204127
. 28.
Cui
, G.
, Li
, F.
, Bian
, C.
, Gao
, G.
, and Kou
, Z.
, 2022
, “High-Temperature Wear Behavior of CoCr Matrix Coatings Reinforced by Niobium Element From Room Temperature to 1000 °C
,” ASME J. Tribol.
, 144
(10
), p. 101705
. 29.
Guo
, X.
, Baker
, I.
, Kennedy
, F. E.
, and Song
, M.
, 2020
, “A Comparison of the Dry Sliding Wear Behavior of NiCoCr Medium Entropy Alloy With 316 Stainless Steel
,” Mater. Charact.
, 160
(1
), p. 110132
. 30.
Deshpande
, P. K.
, and Lin
, R. Y.
, 2006
, “Wear Resistance of WC Particle Reinforced Copper Matrix Composites and the Effect of Porosity
,” Mater. Sci. Eng. A
, 418
(1–2
), pp. 137
–145
. 31.
Stott
, F. H.
, 1998
, “The Role of Oxidation in the Wear of Alloys
,” Tribol. Int.
, 31
(1–3
), pp. 61
–71
. 32.
Joos
, O.
, Boher
, C.
, Vergne
, C.
, Gaspard
, C.
, Nylen
, T.
, and Rezai-Aria
, F.
, 2007
, “Assessment of Oxide Scales Influence on Wear Damage of HSM Work Rolls
,” Wear
, 263
(1–6
), pp. 198
–206
. 33.
Campos-Silva
, I.
, Contla-Pacheco
, A. D.
, Figueroa-López
, U.
, Martínez-Trinidad
, J.
, Garduño-Alva
, A.
, and Ortega-Avilés
, M.
, 2019
, “Sliding Wear Resistance of Nickel Boride Layers on an Inconel 718 Superalloy
,” Surf. Coat. Technol.
, 378
(1
), p. 124862
. 34.
Mishra
, S. B.
, Chandra
, K.
, and Prakash
, S.
, 2013
, “Dry Sliding Wear Behavior of Nickel-, Iron- and Cobalt-Based Superalloys
,” Tribol. - Mater. Surf. Interfaces
, 7
(3
), pp. 122
–128
. 35.
Rigney
, D. A.
, 2000
, “Transfer, Mixing and Associated Chemical and Mechanical Processes During the Sliding of Ductile Materials
,” Wear
, 245
(1–2
), pp. 1
–9
. 36.
Wei
, X.
, Hua
, M.
, Xue
, Z.
, Gao
, Z.
, and Li
, J.
, 2009
, “Evolution of Friction-Induced Microstructure of SUS 304 Meta-Stable Austenitic Stainless Steel and Its Influence on Wear Behavior
,” Wear
, 267
(9–10
), pp. 1386
–1392
. 37.
Gilroy
, D.
, and Mayne
, J. E. O.
, 1965
, “The Oxidation of Iron at Room Temperature
,” Corros. Sci.
, 5
(1
), pp. 55
–58
. 38.
Stott
, F. H.
, Lin
, D. S.
, Wood
, G. C.
, and Stevenson
, C. W.
, 1976
, “The Tribological Behavior of Nickel and Nickel -Chromium Alloys at Temperatures From 20 to 800 C
,” Wear
, 36
(2
), pp. 147
–174
. 39.
Johnson
, B. J.
, Kennedy
, F. E.
, and Baker
, I.
, 1996
, “Dry Sliding Wear of NiAl
,” Wear
, 192
(1–2
), pp. 241
–247
. 40.
Ramırez-Ramırez
, J. H.
, Alvarado-Orozco
, J. M.
, Perez-Gonzalez
, F. A.
, Colas
, R.
, and Garza-Montes-de-Oca
, N. F.
, 2019
, “Influence of Heat Treatment on the Wear Behavior of a Haynes 282VR Nickel-Based Superalloy
,” ASME J. Tribol.
, 141
(2
), p. 041606
. 41.
Fox
, G. R.
, and Liang
, H.
, 2010
, “Wear Mode Comparison of High-Performance Inconel Alloys
,” ASME J. Tribol.
, 132
(2
), p. 021603
. Copyright © 2022 by ASME
You do not currently have access to this content.