Abstract

The tribological performance of scrolls lubricated with CO2/oil mixture is investigated using a combination of the mixed lubrication model and the homogeneous model. The physical characteristics of the CO2/oil mixture were established prior to using the lubrication model. Then the evolution of the lubrication condition during the meshing process of scrolls was investigated, and the impact of radial clearance and refrigerant on the tribological behavior was assessed. The lubrication condition of the tribo-pair deteriorates as the meshing point moves toward the center of the scrolls. The effects of radial clearance and refrigerant mass fraction on friction and lubrication are strongly influenced by the meshing position. In addition, the presence of refrigerant leads to less hydrodynamic pressure and more asperity contact.

References

1.
Zhang
,
Z. Q.
,
Wang
,
D. D.
,
Zhang
,
C. Q.
, and
Chen
,
J. P.
,
2018
, “
Electric Vehicle Range Extension Strategies Based on Improved AC System in Cold Climate—A Review
,”
Int. J. Refrig.
,
88
, pp.
141
150
.
2.
Wang
,
Z.
,
Zhao
,
H. X.
,
Wang
,
X. L.
,
Han
,
J. T.
, and
Lai
,
Y. H.
,
2020
, “
Thermodynamic Performance Evaluation of the CO2 Parallel Compression Supermarket Refrigeration System With a Subcooler
,”
Int. J. Energy Res.
,
44
(
8
), pp.
6709
6724
.
3.
Zhao
,
R. C.
,
Li
,
W. H.
, and
Zhuge
,
W. L.
,
2020
, “
Unsteady Characteristic and Flow Mechanism of a Scroll Compressor With Novel Discharge Port for Electric Vehicle Air Conditioning
,”
Int. J. Refrig.
,
118
, pp.
403
414
.
4.
Zheng
,
S.
,
Wei
,
M.
,
Song
,
P.
,
Hu
,
C.
, and
Tian
,
R.
,
2020
, “
Thermodynamics and Flow Unsteadiness Analysis of Trans-critical CO2 in a Scroll Compressor for Mobile Heat Pump Air-Conditioning System
,”
Appl. Therm. Eng.
,
175
, p.
115368
.
5.
Zheng
,
S. Y.
,
Wei
,
M. S.
,
Hu
,
C. X.
,
Song
,
P. P.
,
Tian
,
R.
,
Li
,
Y. H.
,
Sun
,
J. X.
, and
Wu
,
D.
,
2021
, “
Impact of Micro-grooves in Scroll Wrap Tips on the Performance of a Trans-critical CO2 Scroll Compressor
,”
Int. J. Refrig.
,
131
, pp.
493
504
.
6.
Farfan-Cabrera
,
L. I.
,
2019
, “
Tribology of Electric Vehicles: A Review of Critical Components, Current State and Future Improvement Trends
,”
Tribol. Int.
,
138
, pp.
473
486
.
7.
Fukuta
,
M.
,
Sotani
,
T.
, and
Motozawa
,
M.
,
2021
, “
Leakage and Friction Characteristics at Sliding Surface of Tip Seal in Scroll Compressors
,”
Int. J. Refrig.
,
125
, pp.
104
112
.
8.
Zhang
,
Y.
,
Wang
,
W.
,
Wei
,
D.
,
Wang
,
G.
,
Xu
,
J.
, and
Liu
,
K.
,
2022
, “
Coupling Analysis of Tribological and Dynamical Behavior for a Thermal Turbulent Fluid Lubricated Floating Ring Bearing-Rotor System at Ultra-High Speeds
,”
Tribol. Int.
,
165
, p.
107325
.
9.
Zhang
,
Y.
,
Wang
,
W.
,
Wei
,
D.
,
Wang
,
G.
,
Xu
,
J.
, and
Liu
,
K.
,
2022
, “
Dynamic Stability of Unbalance-Induced Vibration in a Turbocharger Rotor-Bearing System With the Nonlinear Effect of Thermal Turbulent Lubricating Fluid Film
,”
J. Sound Vib.
,
528
, p.
116909
.
10.
Kim
,
K.
,
Hong
,
G.
, and
Jang
,
G.
,
2021
, “
Dynamic Analysis of a Flexible Shaft in a Scroll Compressor Considering Solid Contact and Oil Film Pressure in Journal Bearings
,”
Int. J. Refrig.
,
127
, pp.
165
173
.
11.
Liu
,
Y. G.
,
Hung
,
C. H.
, and
Chang
,
Y. C.
,
2010
, “
Design Optimization of Scroll Compressor Applied for Frictional Losses Evaluation
,”
Int. J. Refrig.
,
33
(
3
), pp.
615
624
.
12.
Wang
,
C.
,
Wu
,
J.
,
Cheng
,
J.
,
Zhang
,
S.
, and
Zhang
,
K.
,
2022
, “
Elasto-hydrodynamic Lubrication of the Journal Bearing System With a Relief Groove in the Scroll Compressor: Simulation and Experiment
,”
Tribol. Int.
,
165
, p.
107252
.
13.
Kim
,
M.-S.
,
Shim
,
J.
,
Kim
,
J.
,
Jong
,
D.-G.
, and
Park
,
S.-S.
,
2020
, “
Multiphysics Simulation and Experiment of a Thrust Bearing in Scroll Compressors
,”
Tribol. Int.
,
142
, p.
105969
.
14.
He
,
Z. L.
,
Ji
,
L. T.
, and
Xing
,
Z. W.
,
2020
, “
Experimental Investigation on the DLC Film Coating Technology in Scroll Compressors of Automobile Air Conditioning
,”
Energies
,
13
(
19
), p.
5103
.
15.
Sharif
,
M. Z.
,
Azmi
,
W. H.
,
Redhwan
,
A. A. M.
, and
Mamat
,
R.
,
2016
, “
Investigation of Thermal Conductivity and Viscosity of Al2O3/PAG Nanolubricant for Application in Automotive Air Conditioning System
,”
Int. J. Refrig.
,
70
, pp.
93
102
.
16.
Kumar
,
R.
,
Singh
,
J.
, and
Kundal
,
P.
,
2017
, “
Effect of CuO Nanolubricant on Compressor Characteristics and Performance of Lpg Based Refrigeration Cycle: Experimental Investigation
,”
Heat Mass Transf.
,
54
(
5
), pp.
1405
1413
.
17.
Grando
,
F. P.
,
Priest
,
M.
, and
Prata
,
A. T.
,
2006
, “
Lubrication in Refrigeration Systems: Numerical Model for Piston Dynamics Considering Oil-Refrigerant Interaction
,”
Proc. IMechE Part J.: J. Eng. Tribol.
,
220
(
3
), pp.
245
258
.
18.
Zhelezny
,
P. V.
,
Zhelezny
,
V. P.
,
Procenko
,
D. A.
, and
Ancherbak
,
S. N.
,
2007
, “
An Experimental Investigation and Modelling of the Thermodynamic Properties of Isobutane–Compressor Oil Solutions: Some Aspects of Experimental Methodology
,”
Int. J. Refrig.
,
30
(
3
), pp.
433
445
.
19.
Zhelezny
,
V. P.
,
Sechenyh
,
V. V.
,
Semenyuk
,
Y. V.
,
Grebenkov
,
A. J.
, and
Beliayeva
,
O. V.
,
2009
, “
An Experimental Investigation and Modelling of the Viscosity Refrigerant/Oil Solutions
,”
Int. J. Refrig.
,
32
(
6
), pp.
1389
1395
.
20.
Feja
,
S.
, and
Hanzelmann
,
C.
,
2015
, “
Experimental Studies of Thermodynamic Properties of R744-Oil-Mixtures Up To 140 °C and 150 Bar
,”
Int. J. Refrig.
,
60
, pp.
135
141
.
21.
Wu
,
J. H.
,
Chen
,
Z. H.
,
Lin
,
J.
, and
Li
,
J. B.
,
2018
, “
Experimental Analysis on R290 Solubility and R290/Oil Mixture Viscosity in Oil Sump of the Rotary Compressor
,”
Int. J. Refrig.
,
94
, pp.
24
32
.
22.
Wang
,
C.
,
Xing
,
Z. W.
,
Hou
,
F.
,
Wu
,
H. G.
, and
Yu
,
Z. Q.
,
2018
, “
Research on Axis Orbit of the Journal Bearing Lubricated With Oil and Refrigerant Mixtures in a Twin-Screw Refrigeration Compressor
,”
Int. J. Refrig.
,
90
, pp.
1
11
.
23.
Lee
,
W.
,
Murashima
,
M.
,
Umehara
,
N.
,
Tokoroyama
,
T.
,
Horaguchi
,
N.
, and
Ishimoto
,
T.
,
2022
, “
Realization of Near-Less Friction of ta-CNx Coating Under R32 Refrigerant Environment
,”
Tribol. Int.
,
168
, p.
107404
.
24.
Gullo
,
P.
,
Hafner
,
A.
, and
Banasiak
,
K.
,
2018
, “
Transcritical R744 Refrigeration Systems for Supermarket Applications: Current Status and Future Perspectives
,”
Int. J. Refrig.
,
93
, pp.
269
310
.
25.
Xu
,
W. J.
,
Li
,
M. X.
,
Li
,
Y.
, and
Zhao
,
J.
,
2022
, “
A Comprehensive Review of the Effect of Lubricant on the Flow Characteristics of Supercritical CO2 During Cooling
,”
Int. J. Refrig.
,
133
, pp.
145
156
.
26.
Hurisse
,
O.
,
2017
, “
Numerical Simulations of Steady and Unsteady Two-Phase Flows Using a Homogeneous Model
,”
Comput. Fluids
,
152
, pp.
88
103
.
27.
Lacerda
,
V. T.
,
Prata
,
A. T.
, and
Fagotti
,
F.
,
2000
, “
Experimental Characterization of Oil-Refrigerant Two-Phase Flow
,”
Proceedings of the ASME 2000 International Mechanical Engineering Congress and Exposition. Advanced Energy Systems
,
Orlando, FL
,
Nov. 5–10
, 40, pp.
101
109
.
28.
Barbosa
,
J. R.
,
Lacerda
,
V. T.
, and
Prata
,
A. T.
,
2004
, “
Prediction of Pressure Drop in Refrigerant–Lubricant Oil Flows With High Contents of Oil and Refrigerant Outgassing in Small Diameter Tubes
,”
Int. J. Refrig.
,
27
(
2
), pp.
129
139
.
29.
Sun
,
D. F.
,
Tang
,
J. C.
,
Zhang
,
X. P.
,
Yuan
,
X. D.
,
Qian
,
Y.
,
Ye
,
F. P.
,
Ye
,
B.
, and
Jiang
,
B.
,
2022
, “
Optimization of Radial Flexible Mechanism in Scroll Compressor Based on Oil Film Lubrication Analysis
,”
Ind. Lubr. Tribol.
,
74
(
5
), pp.
514
521
.
30.
Wang
,
H. L.
,
Tian
,
J. R.
,
Du
,
Y. H.
, and
Hou
,
X. J.
,
2017
, “
Numerical Simulation of CO2 Scroll Compressor in Transcritical Compression Cycle
,”
Heat Mass Transf.
,
54
(
5
), pp.
1395
1403
.
31.
Lin
,
C. C.
,
Chang
,
Y. C.
,
Liang
,
K. Y.
, and
Hung
,
C. H.
,
2005
, “
Temperature and Thermal Deformation Analysis on Scrolls of Scroll Compressor
,”
Appl. Therm. Eng.
,
25
(
11–12
), pp.
1724
1739
.
32.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(1), pp.
12
17
.
33.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Technol.
,
101
(
2
), pp.
220
229
.
34.
Wu
,
C.
, and
Zheng
,
L.
,
1989
, “
An Average Reynolds Equation for Partial Film Lubrication With a Contact Factor
,”
ASME J. Tribol.
,
111
(
1
), pp.
188
191
.
35.
Leighton
,
M.
,
Morris
,
N.
,
Gore
,
M.
,
Rahmani
,
R.
,
Rahnejat
,
H.
, and
King
,
P. D.
,
2016
, “
Boundary Interactions of Rough Non-Gaussian Surfaces
,”
Proc. IMechE Part J.: J. Eng. Tribol.
,
230
(
11
), pp.
1359
1370
.
36.
Leighton
,
M.
,
Rahmani
,
R.
, and
Rahnejat
,
H.
,
2016
, “
Surface-Specific Flow Factors for Prediction of Friction of Cross-Hatched Surfaces
,”
Surf. Topogr.: Metrol. Prop.
,
4
(
2
), p.
025002
.
37.
Pei
,
J.
,
Han
,
X.
,
Tao
,
Y.
, and
Feng
,
S.
,
2020
, “
Mixed Elastohydrodynamic Lubrication Analysis of Line Contact With Non-Gaussian Surface Roughness
,”
Tribol. Int.
,
151
, p.
106449
.
38.
Ren
,
J.
, and
Yuan
,
H.
,
2022
, “
Contact Analysis and Friction Prediction of Non-Gaussian Random Surfaces
,”
Appl. Sci.
,
12
(
21
), p.
11237
.
39.
Kotwal
,
C. A.
, and
Bhushan
,
B.
,
1996
, “
Contact Analysis of Non-Gaussian Surfaces for Minimum Static and Kinetic Friction and Wear
,”
Tribol. Trans.
,
39
(
4
), pp.
890
898
.
40.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. I MechE
,
185
(
1
), pp.
625
633
.
41.
Morris
,
N.
,
Rahmani
,
R.
,
Rahnejat
,
H.
,
King
,
P. D.
, and
Fitzsimons
,
B.
,
2013
, “
Tribology of Piston Compression Ring Conjunction Under Transient Thermal Mixed Regime of Lubrication
,”
Tribol. Int.
,
59
, pp.
248
258
.
42.
Gu
,
C.
,
Meng
,
X.
,
Xie
,
Y.
, and
Kong
,
X.
,
2017
, “
Performance of Surface Texturing During Start-Up Under Starved and Mixed Lubrication
,”
ASME J. Tribol.
,
139
(
1
), p.
011702
.
43.
Rohde
,
S. M.
,
1980
, “
A Mixed Friction Model for Dynamically Loaded Contacts With Application to Piston Ring Lubrication
,”
Friction and Traction: Proceedings of the 7th Leeds-Lyon Symposium on Tribology
,
England
,
September 9–12
, pp.
262
270
.
44.
Wang
,
G.
,
Wang
,
W.
,
Zhang
,
Y.
,
Shen
,
J.
,
Xu
,
J.
, and
Liu
,
K.
,
2022
, “
A Solution for Mixed Elastohydrodynamic Lubrication Modeling Considering Effects of Solid Particles and Surface Roughness
,”
Proc. IMechE Part J.: J. Eng. Tribol.
,
236
(
11
), pp.
2272
2282
.
45.
Zhu
,
D.
,
Wang
,
J.
, and
Wang
,
Q. J.
,
2015
, “
On the Stribeck Curves for Lubricated Counterformal Contacts of Rough Surfaces
,”
ASME J. Tribol.
,
137
(
2
), p.
021501
.
46.
Seeton
,
C. J.
, and
Hrnjak
,
P.
,
2006
, “
Thermophysical Properties of CO2-Lubricant Mixtures and Their Affect on 2-Phase Flow in Small Channels (Less than 1 mm)
,”
International Refrigeration and Air Conditioning Conference
,
West Lafayette, IN
,
July 17–20
, pp.
1
9
.
47.
He
,
T.
,
Zou
,
D.
,
Lu
,
X.
,
Guo
,
Y.
,
Wang
,
Z.
, and
Li
,
W.
,
2014
, “
Mixed-Lubrication Analysis of Marine Stern Tube Bearing Considering Bending Deformation of Stern Shaft and Cavitation
,”
Tribol. Int.
,
73
, pp.
108
116
.
48.
Hauk
,
A.
, and
Weidner
,
E.
,
2000
, “
Thermodynamic and Fluid-Dynamic Properties of Carbon Dioxide With Different Lubricants in Cooling Circuits for Automobile Application
,”
Ind. Eng. Chem. Res.
,
39
(
12
), pp.
4646
4651
.
49.
Jeon
,
H. G.
,
Oh
,
S. D.
, and
Lee
,
Y. Z.
,
2009
, “
Friction and Wear of the Lubricated Vane and Roller Materials in a Carbon Dioxide Refrigerant
,”
Wear
,
267
(
5–8
), pp.
1252
1256
.
50.
Zhu
,
D.
, and
Wang
,
Q. J.
,
2012
, “
On the Λ Ratio Range of Mixed Lubrication
,”
Proc. IMechE Part J.: J. Eng. Tribol.
,
226
(
12
), pp.
1010
1022
.
You do not currently have access to this content.