Abstract

A model is proposed to describe and analyze hydrodynamic bearings with circumferential parallel arranged grooves along any arbitrary groove curve. The Reynolds equation is solved with finite volume method, and the additional terms of the discretized equation for any arbitrary groove curve are deducted. With the model, any groove curve could be characterized by setting an array of inclination angles, and dash-shape grooves can also be modeled by setting the matrix of flag variables reflecting whether it is in the groove. Based on the model, the transient behaviors of four groove types are analyzed by Runge–Kutta method, with the pressure distribution, rotor’s center orbit, and leakage flow obtained. An experiment is conducted to validate the model. Results show that the dash-shape grooves, which are asymmetrical herringboned and intermittent, have both advantages of stability and sealing. The experimental and numerical results of pressure and leakage flow show good agreement in general. The model proposed in this paper will facilitate the design of grooved hydrodynamic bearings, as different groove types can be analyzed and compared by the same model.

References

1.
Brito
,
F. P.
,
Miranda
,
A. S.
,
Claro
,
J. C. P.
, and
Fillon
,
M.
,
2012
, “
Experimental Comparison of the Performance of a Journal Bearing With a Single and a Twin Axial Groove Configuration
,”
Tribol. Int.
,
54
(
10
), pp.
1
8
.
2.
Miyanaga
,
N.
, and
Tomioka
,
J.
,
2016
, “
Effect of Support Stiffness and Damping on Stability Characteristics of Herringbone-Grooved Aerodynamic Journal Bearings Mounted on Viscoelastic Supports
,”
Tribol. Int.
,
100
(
8
), pp.
195
203
.
3.
Wang
,
C.-C.
,
Yau
,
H.-T.
,
Jang
,
M.-J.
, and
Yeh
,
Y.-L.
,
2007
, “
Theoretical Analysis of the Non-Linear Behavior of a Flexible Rotor Supported by Herringbone Grooved Gas Journal Bearings
,”
Tribol. Int.
,
40
(
3
), pp.
533
541
.
4.
Ma
,
C.
,
Bai
,
S.
, and
Peng
,
X.
,
2016
, “
Thermo-Hydrodynamic Characteristics of Spiral Groove Gas Face Seals Operating at Low Pressure
,”
Tribol. Int.
,
95
(
3
), pp.
44
54
.
5.
Ahmad
,
M. A.
,
Kasolang
,
S.
,
Dwyer-Joyce
,
R.
, and
Bakar
,
M. A. A.
,
2013
, “
The Effects of Oil Groove Position on Torque and Frictional Force in Hydrodynamic Journal Bearing
,”
Appl. Mech. Mater.
,
393
(
1
), pp.
907
912
. www.scientific.net/AMM.393.907
6.
Hirayama
,
T.
,
Yamaguchi
,
N.
,
Sakai
,
S.
,
Hishida
,
N.
,
Matsuoka
,
T.
, and
Yabe
,
H.
,
2009
, “
Optimization of Groove Dimensions in Herringbone-Grooved Journal Bearings for Improved Repeatable Run-Out Characteristics
,”
Tribol. Int.
,
42
(
5
), pp.
675
681
.
7.
Roy
,
L.
, and
Kakoty
,
S. K.
,
2013
, “
Optimum Groove Location of Hydrodynamic Journal Bearing Using Genetic Algorithm
,”
Adv. Tribol.
,
2013
(
3
), pp.
1
13
.
8.
Zhang
,
S.
,
Jiang
,
S.
, and
Lin
,
X.
,
2020
, “
Static and Dynamic Characteristics of High-Speed Water-Lubricated Spiral-Groove Thrust Bearing Considering Cavitating and Centrifugal Effects
,”
Tribol. Int.
,
145
(
5
), p.
106159
.
9.
Wang
,
C.
,
Wu
,
J.
,
Cheng
,
J.
,
Zhang
,
S.
, and
Zhang
,
K.
,
2022
, “
Elasto-Hydrodynamic Lubrication of the Journal Bearing System With a Relief Groove in the Scroll Compressor: Simulation and Experiment
,”
Tribol. Int.
,
165
(
1
), p.
107252
.
10.
Xiang
,
G.
,
Han
,
Y.
,
Wang
,
J.
,
Xiao
,
K.
, and
Li
,
J.
,
2019
, “
A Transient Hydrodynamic Lubrication Comparative Analysis for Misaligned Micro-Grooved Bearing Considering Axial Reciprocating Movement of Shaft
,”
Tribol. Int.
,
132
(
4
), pp.
11
23
.
11.
Chatterton
,
S.
,
Dang
,
P. V.
,
Pennacchi
,
P.
,
De Luca
,
A.
, and
Flumian
,
F.
,
2017
, “
Experimental Evidence of a Two-Axial Groove Hydrodynamic Journal Bearing Under Severe Operation Conditions
,”
Tribol. Int.
,
109
(
5
), pp.
416
427
.
12.
Bouyer
,
J.
,
Wodtke
,
M.
, and
Fillon
,
M.
,
2022
, “
Experimental Research on a Hydrodynamic Thrust Bearing With Hydrostatic Lift Pockets: Influence of Lubrication Modes on Bearing Performance
,”
Tribol. Int.
,
165
(
1
), p.
107253
.
13.
Chen
,
Y.
,
Shi
,
X.
,
Wang
,
X.
,
Wang
,
H.
,
Yu
,
C.
, and
Sun
,
Y.
,
2022
, “
Multi-Objective Analysis Design of Spiral Groove Conical Bearing Considering Cavitation Effects
,”
Res. Eng.
,
15
(
8
), p.
100582
.
14.
Xie
,
Z.
,
Wang
,
X.
, and
Zhu
,
W.
,
2022
, “
Theoretical and Experimental Exploration Into the Fluid Structure Coupling Dynamic Behaviors Towards Water-Lubricated Bearing With Axial Asymmetric Grooves
,”
Mech. Syst. Signal Process.
,
168
(
1
), p.
108624
.
15.
Chen
,
S.
,
Chou
,
H.
, and
Kang
,
Y.
,
2012
, “
Stability Analysis of Hydrodynamic Bearing With Herringbone Grooved Sleeve
,”
Tribol. Int.
,
55
(
11
), pp.
15
28
.
16.
Li
,
Y.
,
Zhang
,
D.
, and
Duan
,
F.
,
2019
, “
Dynamic Characteristics of Opposed-Conical Gas-Dynamic Bearings
,”
Ind. Lubr. Tribol.
,
72
(
3
), pp.
415
425
.
17.
Li
,
Y.
, and
Duan
,
F.
,
2019
, “
Interference Torque of a Three-Floated Gyroscope With Gas-Lubricated Bearings Subject to a Sudden Change of the Specific Force
,”
Chin. J. Aeronaut.
,
32
(
3
), pp.
737
747
.
18.
Zhou
,
W.
,
Wang
,
Y.
,
Wu
,
G.
,
Gao
,
B.
, and
Zhang
,
W.
,
2022
, “
Research on the Lubricated Characteristics of Journal Bearing Based on Finite Element Method and Mixed Method
,”
Ain Shams Eng. J.
,
13
(
4
), p.
101638
.
19.
Yan
,
W.
,
Jianjun
,
S.
,
Qiong
,
H.
,
Da
,
W.
, and
Xiaoqing
,
Z.
,
2018
, “
Orientation Effect of Orderly Roughness Microstructure on Spiral Groove Dry Gas Seal
,”
Tribol. Int.
,
126
(
10
), pp.
97
105
.
20.
Jiang
,
M.
,
Sakota
,
D.
,
Kosaka
,
R.
, and
Hijikata
,
W.
,
2022
, “
Impact of Gap Size and Groove Design of Hydrodynamic Bearing on Plasma Skimming Effect for Use in Rotary Blood Pump
,”
J. Artif. Organs.
,
25
(
3
), pp.
195
203
.
21.
Feng
,
H.
,
Jiang
,
S.
, and
Shang-Guan
,
Y.
,
2021
, “
Three-Dimensional Computational Fluid Dynamic Analysis of High-Speed Water-Lubricated Hydrodynamic Journal Bearing With Groove Texture Considering Turbulence
.
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
235
(
11
), pp.
2272
2286
.
22.
Gu
,
C.
,
Meng
,
X.
,
Wang
,
S.
, and
Ding
,
X.
,
2020
, “
Modeling a Hydrodynamic Bearing With Provision for Misalignments and Textures
,”
ASME J. Tribol.
,
142
(
4
), p.
041801
.
23.
Gu
,
C.
,
Meng
,
X.
, and
Zhang
,
D.
,
2018
, “
Analysis of the Coated and Textured Ring/Liner Conjunction Based on a Thermal Mixed Lubrication Model
,”
Friction
,
6
(
4
), pp.
420
431
.
24.
Roy
,
B.
,
Roy
,
L.
, and
Dey
,
S.
,
2021
, “
Effect of Eccentricity and Surface Roughness On Probabilistic Performance of Two Axial Groove Bearing
,”
ASME J. Eng. Gas Turbines Power.
,
143
(
10
), p.
101013
.
25.
Jiang
,
S.
,
Liu
,
P.
, and
Lin
,
X.
,
2022
, “
Study on Static Characteristics of Water-Lubricated Textured Spiral Groove Thrust Bearing Using Laminar Cavitating Flow Lubrication Model
,”
ASME J. Tribol.
,
144
(
4
), p.
041803
.
26.
Xia
,
X.
,
Chen
,
Y.
,
Wang
,
X.
, and
Sun
,
Y.
,
2021
, “
Study of Groove Parameters on the Hydrodynamic Behavior of Spiral-Grooved Thrust Bearing With Gas Lubricant
,”
Int. J. Rotating Mach.
,
2021
(
1
), p.
5571765
.
27.
Pfeil
,
S.
,
Gravenkamp
,
H.
,
Duvigneau
,
F.
, and
Woschke
,
E.
,
2021
, “
Scaled Boundary Finite Element Method for Hydrodynamic Bearings in Rotordynamic Simulations
,”
Int. J. Mech. Sci.
,
199
(
4
), p.
106427
.
28.
Liu
,
C.
,
Li
,
W.
,
Lu
,
X.
, and
Zhao
,
B.
,
2020
, “
Effects of Double Parabolic Profiles With Groove Textures on the Hydrodynamic Lubrication Performance of Journal Bearing Under Steady Operating Conditions
,”
Mechanics & Industry
,
21
(
3
), p.
301
.
29.
Meng
,
Q. Z.
,
Cai
,
L.
, and
He
,
M.
,
2014
, “
Effect Investigation of the Circumferential Grooves on the Static Characteristics of Hydrodynamic Journal Bearing Using CFD Method
,”
Appl. Mech. Mater.
,
643
(
3
), pp.
316
321
. www.scientific.net/AMM.643.316
30.
Guenat
,
E.
, and
Schiffmann
,
J.
,
2020
, “
Dynamic Force Coefficients Identification on Air-Lubricated Herringbone Grooved Journal Bearing
,”
Mech. Syst. Signal Process.
,
136
(
11
), p.
106498
.
31.
Du
,
H.
,
Li
,
H.
, and
Meng
,
G.
,
2021
, “
Modeling and Load Capacity Analysis of Reciprocating Hybrid Linear Guideway With Annular Groove and Sloped Recesses
,”
ASME J. Tribol.
,
143
(
6
), p.
061803
.
32.
Kumar
,
A.
, and
Sharma
,
S. C.
,
2019
, “
Optimal Parameters of Grooved Conical Hybrid Journal Bearing With Shear Thinning and Piezo-Viscous Lubricant Behavior
,”
ASME J. Tribol.
,
141
(
7
), p.
071702
.
33.
Ramos
,
D. J.
, and
Daniel
,
G. B.
,
2022
, “
Microgroove Optimization to Improve Hydrodynamic Bearing Performance
,”
Tribol. Int.
,
174
(
10
), p.
107667
.
34.
Fesanghary
,
M.
, and
Khonsari
,
M. M.
,
2013
, “
On the Optimum Groove Shapes for Load-Carrying Capacity Enhancement in Parallel Flat Surface Bearings: Theory and Experiment
,”
Tribol. Int.
,
67
(
11
), pp.
254
262
.
35.
H
,
Y.
,
2006
,
Hydrodynamic Lubrication
,
Springer Science & Business Media
,
Berlin, Germany
.
36.
Pan
,
W.
,
2022
,
Stability Analysis of Water Lubricated Bearing Rotor System of Energy Recovery Turbocharger for Seawater Desalination
,
Jiangsu University
,
China
.
37.
Essongue
,
S.
,
Ledoux
,
Y.
, and
Ballu
,
A.
,
2022
, “
Speeding up Mesoscale Thermal Simulations of Powder Bed Additive Manufacturing Thanks to the Forward Euler Time-Integration Scheme: A Critical Assessment
,”
Finite Elements Anal. Des.
,
211
(
15
), p.
103825
.
You do not currently have access to this content.