Abstract

This study's primary goal is to examine the effects of wear parameters on the wear-rate (WR) of magnesium (AZ91) composites. The composites are made up of using a stir casting process with aluminum oxide (Al2O3) and graphene as reinforcements. In the present work, one material factor (material type (MT)) and three tribological factors (load(L), velocity (V), and sliding distance (D)) were chosen to study their influence on the wear-rate. Taguchi technique is employed for the design of experiments, and it was observed that load (L) is the most influencing parameter on WR, followed by MT, D, and V. The optimal values of influencing parameters for WR are as follows: MT = T2, L = 10 N, V = 2 m/s, and D = 500 m. The wear mechanisms at the highest and lowest WR conditions were also studied by observing their scanning electron micrographs (SEM) on wear pin’s surface and its debris. From the SEM analysis, it was observed that abrasion, delamination, adhesion, and oxidation mechanisms were exhibited on the wear surface. Machine learning (ML) models such as artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and decision tree (DT) were used to develop an effective prediction model to predict the output responses at the corresponding input variables. Confirmation tests were conducted under optimal conditions, and the same were examined with the results of ANN, ANFIS and DT. It was noticed that the DT model exhibited higher accuracy when compared to other models considered in this study.

References

1.
Kulekci
,
M. K.
,
2008
, “
Magnesium and Its Alloys Applications in Automotive Industry
,”
Int. J. Adv. Manuf. Technol.
,
39
(
9–10
), pp.
851
865
.
2.
Gupta
,
M.
, and
Sharon
,
N. M. L.
,
2011
,
Magnesium, Magnesium Alloys, and Magnesium Composites
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
3.
Cha
,
P.
,
Han
,
H.
,
Yang
,
G.
,
Kim
,
Y.
,
Hong
,
K.
,
Lee
,
S.
,
Jung
,
J.
, et al
,
2013
, “
Biodegradability Engineering of Biodegradable Mg Alloys : Tailoring the Electrochemical Properties and Microstructure of Constituent Phases
,”
Sci. Rep.
,
3
(
1
), p.
2367
.
4.
Kavimani
,
V.
,
Soorya Prakash
,
K.
, and
Thankachan
,
T.
,
2019
, “
Multi-Objective Optimization in WEDM Process of Graphene—SiC-Magnesium Composite Through Hybrid Techniques
,”
Meas. J. Int. Meas. Confed.
,
145
(
1
), pp.
335
349
.
5.
Sathish
,
T.
,
Mohanavel
,
V.
,
Ansari
,
K.
,
Saravanan
,
R.
,
Karthick
,
A.
,
Afzal
,
A.
,
Alamri
,
S.
, and
Ahamed Saleel
,
C.
,
2021
, “
Synthesis and Characterization of Mechanical Properties and Wire Cut Edm Process Parameters Analysis in Az61 Magnesium Alloy + B4c + Sic
,”
Materials (Basel)
,
14
(
13
), p.
3689
.
6.
Yu
,
W.
,
Zhao
,
H.
,
Wang
,
X.
,
Wang
,
L.
,
Xiong
,
S.
,
Huang
,
Z.
,
Li
,
S.
,
Zhou
,
Y.
, and
Zhai
,
H.
,
2018
, “
Synthesis and Characterization of Textured Ti2AlC Reinforced Magnesium Composite
,”
J. Alloys Compd.
,
730
(
1
), pp.
191
195
.
7.
Wang
,
M.
,
Zhao
,
Y.
,
Wang
,
L. D.
,
Zhu
,
Y. P.
,
Wang
,
X. J.
,
Sheng
,
J.
,
Yang
,
Z. Y.
,
Shi
,
H. L.
,
Shi
,
Z. D.
, and
Fei
,
W. D.
,
2018
, “
Achieving High Strength and Ductility in Graphene/Magnesium Composite via an In-Situ Reaction Wetting Process
,”
Carbon
,
139
, pp.
954
963
.
8.
Watanabe
,
H.
,
Ikeo
,
N.
, and
Mukai
,
T.
,
2018
, “
Processing and Mechanical Properties of a Tricalcium Phosphate-Dispersed Magnesium-Based Composite
,”
Mater. Trans.
,
60
(
1
), pp.
1
13
.
9.
Lakshmanan
,
P.
,
Kumanan
,
G.
,
Arunkumar
,
L.
, and
Amith
,
S. C.
,
2021
, “
Experimental Investigations of Material Removal Rate on Mg/SiCp-Flyash Hybrid Metal Matrix Composites by Electrical Discharge Machining
,”
Mater. Today Proc.
,
46
(
2
), pp.
986
990
.
10.
Kavimani
,
V.
,
Prakash
,
K. S.
,
Thankachan
,
T.
,
Nagaraja
,
S.
,
Jeevanantham
,
A. K.
, and
Jhon
,
J. P.
,
2020
, “
WEDM Parameter Optimization for Silicon@r-GO/Magnesium Composite Using Taguchi Based GRA Coupled PCA
,”
Silicon
,
12
(
5
), pp.
1161
1175
.
11.
Kavimani
,
V.
,
Prakash
,
K. S.
, and
Thankachan
,
T.
,
2019
, “
Influence of Machining Parameters on Wire Electrical Discharge Machining Performance of Reduced Graphene Oxide/Magnesium Composite and Its Surface Integrity Characteristics
,”
Compos. Part B Eng.
,
167
(
1
), pp.
621
630
.
12.
Surya
,
M. S.
,
Prasanthi
,
G.
, and
Gugulothu
,
S. K.
,
2021
, “
Investigation of Mechanical and Wear Behaviour of Al7075/SiC Composites Using Response Surface Methodology
,”
Silicon
,
13
(
7
), pp.
2369
2379
.
13.
Dey
,
D.
,
Bhowmik
,
A.
, and
And Biswas
,
A.
,
2021
, “
Influence of TiB2 Addition on Friction and Wear Behaviour of Al2024-TiB2 Ex-Situ Composites
,”
Trans. Nonferrous Met. Soc. China (English Ed.)
,
31
(
5
), pp.
1249
1261
.
14.
Velavan
,
K.
,
Palanikumar
,
K.
, and
Senthilkumar
,
N.
,
2021
, “
Experimental Investigation of Sliding Wear Behaviour of Boron Carbide and Mica Reinforced Aluminium Alloy Hybrid Metal Matrix Composites Using Box-Behnken Design
,”
Mater. Today Proc.
,
44
(
5
), pp.
3803
3810
.
15.
Sathish
,
T.
, and
Karthick
,
S.
,
2020
, “
Wear Behaviour Analysis on Aluminium Alloy 7050 With Reinforced SiC Through Taguchi Approach
,”
J. Mater. Res. Technol.
,
9
(
3
), pp.
3481
3487
.
16.
Alam
,
M.T.
,
Arif
,
S.
,
Ansari
,
A.H.
and
Alam
,
M.N.
,
2019
, “
Optimization of Wear Behaviour Using Taguchi and ANN of Fabricated Aluminium Matrix Nanocomposites by Two-Step Stir Casting
,”
Mater. Res. Express
,
6
(
6
), p.
065002
17.
Kumar
,
A.
,
Kumar
,
S.
,
Mukhopadhyay
,
N. K.
,
Yadav
,
A.
,
Kumar
,
V.
, and
Winczek
,
J.
,
2021
, “
Effect of Variation of Sic Reinforcement on Wear Behaviour of Az91 Alloy Composites
,”
Materials (Basel)
,
14
(
4
), pp.
1
14
.
18.
Kaviti
,
R. V. P.
,
Jeyasimman
,
D.
,
Parande
,
G.
,
Gupta
,
M.
,
Narayanasamy
,
R.
, and
Koppad
,
P. G.
,
2019
, “
Improving the Friction and Wear Characteristics of AZ31 Alloy With the Addition of Al2O3 Nanoparticles
,”
Mater. Res. Express
,
6
(
12
), p.
126505
.
19.
Wang
,
C. R.
,
Deng
,
K. K.
, and
Bai
,
Y.
,
2019
, “
Microstructure, and Mechanical and Wear Properties of Grp/AZ91 Magnesium Matrix Composites
,”
Materials (Basel)
,
12
(
7
), pp.
1
16
.
20.
Girish
,
B. M.
,
Satish
,
B. M.
,
Sarapure
,
S.
,
Somashekar
,
D. R.
, and
Basawaraj
,
2014
, “
Wear Behavior of Magnesium Alloy AZ91 Hybrid Composite Materials
,”
Tribol. Trans.
,
58
(
3
), pp.
481
489
.
21.
Aydin
,
F.
, and
And Durgut
,
R.
,
2021
, “
Estimation of Wear Performance of AZ91 Alloy Under Dry Sliding Conditions Using Machine Learning Methods
,”
Trans. Nonferrous Met. Soc. China (English Ed.)
,
31
(
1
), pp.
125
137
.
22.
Vignesh
,
R. V.
, and
Padmanaban
,
R.
,
2018
, “
Forecasting Tribological Properties of Wrought AZ91D Magnesium Alloy Using Soft Computing Model
,”
Russ. J. Non-Ferrous Met.
,
59
(
2
), pp.
135
141
.
23.
Kaviti
,
R. V. P.
,
Jeyasimman
,
D.
,
Kumar
,
S. C.
,
Ramesh Babu
,
B. M.
, and
Babu
,
M.
,
2022
, “
Investigation of Wear Behaviour of Magnesium Reinforced With Boron Nitride Nanocomposite Using ANN
,”
J. Mines, Met. Fuels
,
69
(
12A
), p.
190
.
24.
Kavimani
,
V.
,
Prakash
,
K. S.
, and
Thankachan
,
T.
,
2019
, “
Experimental Investigations on Wear and Friction Behaviour of SiC@r-GO Reinforced Mg Matrix Composites Produced Through Solvent-Based Powder Metallurgy
,”
Compos. Part B Eng.
,
162
(
1
), pp.
508
521
.
25.
Sosimi
,
A. A.
,
2020
, “
Analysing Wear Behaviour of Al—CaCO3 Composites Using ANN and Sugeno-Type Fuzzy Inference Systems
,”
Neural Comput. Appl.
,
32
(
17
), pp.
13453
13464
.
26.
Vijayakumar
,
S.
, and
Karunamoorthy
,
L.
,
2012
, “
Modelling Wear Behaviour of Al-SiC Metal Matrix Composites: Soft Computing Technique
,”
Tribol. - Mater. Surf. Interfaces
,
6
(
1
), pp.
25
30
.
27.
Gangwar
,
S.
,
Sharma
,
S.
, and
Pathak
,
V. K.
,
2021
, “
Preliminary Evaluation and Wear Properties Optimization of Boron Carbide and Molybdenum Disulphide Reinforced Copper Metal Matrix Composite Using Adaptive Neuro-Fuzzy Inference System
,”
J. Bio- Tribol-Corros.
,
7
(
1
), pp.
1
19
.
28.
Alagarsamy
,
S. V.
,
Balasundaram
,
R.
,
Ravichandran
,
M.
,
Mohanavel
,
V.
,
Karthick
,
A.
, and
Sathiya Devi
,
S.
,
2021
, “
Taguchi Approach and Decision Tree Algorithm for Prediction of Wear Rate in Zinc Oxide-Filled AA7075 Matrix Composites
,”
Surf. Topogr. Metrol. Prop.
,
9
(
3
), p.
035005
.
29.
Sietsma
,
J.
, and
Dow
,
R. J. F.
,
1991
, “
Creating Artificial Neural Networks That Generalize
,”
Neural Netw.
,
4
(
1
), pp.
67
79
.
30.
Jain
,
A. K.
,
Mao
,
J.
, and
Mohiuddin
,
K. M.
,
1996
, “
Artificial Neural Networks: A Tutorial
,”
Computer
,
29
(
3
), pp.
31
44
.
31.
Jang
,
J. S. R.
,
1993
, “
ANFIS: Adaptive-Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst. Man Cybern.
,
23
(
3
), pp.
665
685
.
32.
Quinlan
,
J. R.
,
1986
, “
Induction of Decision Trees
,”
Mach. Learn.
,
1
(
1
), pp.
81
106
.
33.
Jena
,
M.
, and
Dehuri
,
S.
,
2020
, “
Decision Tree for Classification and Regression: A State-of-the Art Review
,”
Inform.
,
44
(
4
), pp.
405
420
.
34.
Karaboga
,
D.
, and
Kaya
,
E.
,
2019
, “
Adaptive Network Based Fuzzy Inference System (ANFIS) Training Approaches: A Comprehensive Survey
,”
Artif. Intell. Rev.
,
52
(
4
), pp.
2263
2293
.
35.
Abiodun
,
O. I.
,
Jantan
,
A.
,
Omolara
,
A. E.
,
Dada
,
K. V.
,
Mohamed
,
N. A. E.
, and
Arshad
,
H.
,
2018
, “
State-of-the-Art in Artificial Neural Network Applications: A Survey
,”
Heliyon
,
4
(
11
), p.
e00938
.
36.
Rosa
,
J. P. S.
,
Guerra
,
D. J. D.
,
Horta
,
N. C. G.
,
Martins
,
R. M. F.
, and
Lourenço
,
N. C. C.
,
2020
, “
Overview of Artificial Neural Networks
,”
SpringerBriefs Appl. Sci. Technol.
,
1
(
1
), pp.
21
44
.
37.
Loh
,
W. Y.
,
2011
, “
Classification and Regression Trees
,”
Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
,
1
(
1
), pp.
14
23
.
38.
Kartheesan
,
S.
,
Shahul Hamid Khan
,
B.
,
Kamaraj
,
M.
,
Tekumalla
,
S.
, and
Gupta
,
M.
,
2022
, “
Dry Sliding Wear Behavior of Magnesium Nanocomposites Using Response Surface Methodology
,”
ASME J. Tribol.
,
144
(
1
), p.
011704
.
39.
Patle
,
H.
,
Sunil
,
B. R.
, and
Dumpala
,
R.
,
2021
, “
Machining Characteristics, Wear and Corrosion Behavior of AZ91 Magnesium Alloy - Fly Ash Composites Produced by Friction Stir Processing
,”
Materwiss. Werksttech.
,
52
(
1
), pp.
88
99
.
40.
Turan
,
M. E.
,
Sun
,
Y.
,
Akgul
,
Y.
,
Turen
,
Y.
, and
Ahlatci
,
H.
,
2017
, “
The Effect of GNPs on Wear and Corrosion Behaviors of Pure Magnesium
,”
J. Alloys Compd.
,
724
(
1
), pp.
14
23
.
41.
Hassan
,
S. F.
,
Al-Qutub
,
A. M.
,
Tun
,
K. S.
, and
Gupta
,
M.
,
2015
, “
Study of Wear Mechanisms of a Novel Magnesium Based Hybrid Nanocomposite
,”
ASME J. Tribol.
,
137
(
1
), p.
011601
.
42.
Tajdeen
,
A.
,
Megalingam
,
A.
,
Sivanesh Prabhu
,
M.
, and
Wasim Khan
,
M.
,
2023
, “
Role of Tungsten Disulfide Particles on the Microstructure, Mechanical, and Tribological Behaviors of Friction Stir-Processed Magnesium-Based Composite
,”
ASME J. Tribol.
,
145
(
1
), p.
014501
.
43.
Suh
,
N. P.
,
1973
, “
Update on the Delamination Theory of Wear
,”
Wear
,
25
(
1
), pp.
111
124
.
44.
Sheela
,
K. G.
, and
Deepa
,
S. N.
,
2013
, “
Review on Methods to Fix Number of Hidden Neurons in Neural Networks
,”
Math. Probl. Eng., 2013
,
2013
(
1
), pp.
1
11
.
You do not currently have access to this content.