Abstract

Water-lubricated rubber bearings (WLRBs) are widely used in the propulsion systems of ships and military crafts. Based on the mass conservation boundary condition, the elastohydrodynamic lubrication model of WLRBs is established after considering the elastic deformation of the rubber liner and solved by the finite difference method. An improved algorithm is proposed to track the mass conservation boundary. For the first time, the algorithm allocates independent finite difference grids for the film pressure and fluid fraction to overcome the instability issues and to ensure the flow conservation of each grid cell. The accuracy and stability of the algorithm are verified by the experimental data in the literature, comparison of film pressures calculated by two different finite difference schemes, and flowrate calculations of two different bearings. The lubrication characteristics under the mass conversation boundary condition are compared with classical boundary conditions. The results indicate that the film pressure distribution, velocity distribution, and size and shape of the cavitation zone vary greatly under different boundary conditions in the clearance divergence region. The bearing capacity, attitude angle, and friction force under the mass conservation boundary condition are the largest; those under the double Reynolds boundary condition are smaller; and those under the Reynolds boundary condition are the smallest.

References

1.
Cabrera
,
D. L.
,
Woolley
,
N. H.
,
Allanson
,
D. R.
, and
Tridimas
,
Y. D.
,
2005
, “
Film Pressure Distribution in Water-Lubricated Rubber Journal Bearings
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
219
(
2
), pp.
125
132
.
2.
Geng
,
T.
,
Meng
,
Q.
,
Wang
,
N.
,
Yuan
,
X.
,
Meng
,
Q.
, and
Jia
,
Q.
,
2014
, “
Experimental Investigation of Film Pressure Distribution in Water-Lubricated Rubber Journal Bearings
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
228
(
4
), pp.
397
406
.
3.
Liu
,
G.
, and
Li
,
M.
,
2021
, “
Experimental Study on the Lubrication Characteristics of Water-Lubricated Rubber Bearings at High Rotating Speeds
,”
Tribol. Int.
,
157
, p.
106868
.
4.
Lahmar
,
M.
,
Ellagoune
,
S.
, and
Benyebka
,
B. S.
,
2010
, “
Elastohydrodynamic Lubrication Analysis of a Compliant Journal Bearing Considering Static and Dynamic Deformations of the Bearing Liner
,”
Tribol. Trans.
,
53
(
3
), pp.
349
368
.
5.
Liu
,
S.
, and
Yang
,
B.
,
2015
, “
A New Model of Water-Lubricated Rubber Bearings for Vibration Analysis of Flexible Multistage Rotor Systems
,”
J. Sound Vib.
,
349
, pp.
230
258
.
6.
Zhou
,
G. W.
,
Wang
,
J. X.
,
Han
,
Y. F.
,
Li
,
J. Y.
,
Wei
,
P.
, and
Wei
,
B.
,
2016
, “
Study on the Stiffness and Damping Coefficients of Water-Lubricated Rubber Bearings With Multiple Grooves
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
230
(
3
), pp.
323
335
.
7.
Liu
,
G.
, and
Li
,
M.
,
2020
, “
Lubrication Characteristics of Water-Lubricated Rubber Bearings With Partial Wear
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021209
.
8.
Wang
,
Y. Q.
,
Shi
,
X. J.
, and
Zhang
,
L. J.
,
2014
, “
Experimental and Numerical Study on Water-Lubricated Rubber Bearings
,”
Ind. Lubr. Tribol.
,
66
(
2
), pp.
282
288
.
9.
Wang
,
N.
,
Meng
,
Q. F.
,
Wang
,
P. P.
,
Geng
,
T.
, and
Yuan
,
X. Y.
,
2013
, “
Experimental Research on Film Pressure Distribution of Water-Lubricated Rubber Bearing With Multiaxial Grooves
,”
ASME J. Fluids Eng.
,
135
(
8
), p.
084501
.
10.
Litwin
,
W.
,
2015
, “
Properties Comparison of Rubber and Three Layer PTFE-NBR-Bronze Water Lubricated Bearings With Lubricating Grooves Along Entire Bush Circumference Based on Experimental Tests
,”
Tribol. Int.
,
90
, pp.
404
411
.
11.
Zhou
,
G. W.
,
Wang
,
J. X.
,
Han
,
Y. F.
,
Wei
,
B.
,
Tang
,
B. P.
, and
Zhong
,
P.
,
2016
, “
An Experimental Study on Film Pressure Circumferential Distribution of Water-Lubricated Rubber Bearings With Multiple Grooves
,”
Tribol. Trans.
,
60
(
3
), pp.
385
391
.
12.
Elrod
,
H. G.
, and
Adams
,
M. L.
,
1974
, “
A Computer Program for Cavitation and Starvation Problems
,”
Proceedings of the First LEEDS LYON Symposium on Cavitation and Related Phenomena in Lubrication
,
Leeds, UK
, pp.
37
41
.
13.
Elrod
,
H. G.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Lubr. Technol.
,
103
(
3
), pp.
350
354
.
14.
Brewe
,
D. E.
,
1986
, “
Theoretical Modeling of the Vapor Cavitation in Dynamically Loaded Journal Bearings
,”
ASME J. Tribol.
,
108
(
4
), pp.
628
637
.
15.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
,
1989
, “
Development and Evaluation of a Cavitation Algorithm
,”
Tribol. Trans.
,
32
(
2
), pp.
225
233
.
16.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
,
1990
, “
An Efficient, Robust, and Time Accurate Numerical Scheme Applied to a Cavitation Algorithm
,”
ASME J. Tribol.
,
112
(
1
), pp.
44
51
.
17.
Vincent
,
B.
,
Maspeyrot
,
P.
, and
Frene
,
J.
,
1996
, “
Cavitation in Dynamically Loaded Journal Bearings Using Mobility Method
,”
Wear
,
193
(
2
), pp.
155
162
.
18.
Fesanghary
,
M.
, and
Khonsari
,
M. M.
,
2011
, “
A Modification of the Switch Function in the Elrod Cavitation Algorithm
,”
ASME J. Tribol.
,
133
(
2
), p.
024501
.
19.
Miraskari
,
M.
,
Hemmati
,
F.
,
Jalali
,
A.
,
Alqaradawi
,
M. Y.
, and
Gadala
,
M. S.
,
2017
, “
A Robust Modification to the Universal Cavitation Algorithm in Journal Bearings
,”
ASME J. Tribol.
,
139
(
3
), p.
031703
.
20.
Payvar
,
P.
, and
Salant
,
R. F.
,
1992
, “
A Computational Method for Cavitation in a Wavy Mechanical Seal
,”
ASME J. Tribol.
,
114
(
1
), pp.
199
204
.
21.
Zhang
,
C.
, and
Cheng
,
H. S.
,
2000
, “
Transient Non-Newtonian Thermohydrodynamic Mixed Lubrication of Dynamically Loaded Journal Bearings
,”
ASME J. Tribol.
,
122
(
1
), pp.
156
161
.
22.
Ausas
,
R.
,
Ragot
,
P.
,
Leiva
,
J.
,
Jai
,
M.
,
Bayada
,
G.
, and
Buscaglia
,
G. C.
,
2007
, “
The Impact of the Cavitation Model in the Analysis of Microtextured Lubricated Journal Bearings
,”
ASME J. Tribol.
,
129
(
4
), pp.
868
875
.
23.
Ausas
,
R. F.
,
Jai
,
M.
, and
Buscaglia
,
G. C.
,
2009
, “
A Mass-Conserving Algorithm for Dynamical Lubrication Problems With Cavitation
,”
ASME J. Tribol.
,
131
(
3
), p.
031702
.
24.
Glavatskih
,
S. B.
, and
Fillon
,
M.
,
2006
, “
TEHD Analysis of Thrust Bearings With PTFE-Faced Pads
,”
ASME J. Tribol.
,
128
(
1
), pp.
49
58
.
25.
Liu
,
G.
, and
Li
,
M.
,
2020
, “
Steady-State and Dynamic Characteristics of Water-Lubricated Rubber Bearings Under Two Sets of Reynolds Boundary Conditions
,”
Discontin. Nonlinear. Complex
,
9
(
1
), pp.
71
82
.
26.
Jakobsson
,
B.
, and
Floberg
,
L.
,
1957
, “
The Finite Journal Bearing Considering Vaporization
,”
Trans. Chalmers Univ. Technol.
,
190
, pp.
1
116
.
27.
Han
,
Y.
,
Yin
,
L.
,
Xiang
,
G.
,
Zhou
,
G.
,
Chen
,
H.
, and
Zheng
,
X.
,
2020
, “
An Experimental Study on the Tribological Performance of Water-Lubricated Journal Bearings With Three Different Materials
,”
Ind. Lubr. Tribol.
,
72
(
10
), pp.
1159
1165
.
28.
Gao
,
G. Y.
,
Yin
,
Z. W.
,
Jiang
,
D.
, and
Zhang
,
X. L.
,
2014
, “
Numerical Analysis of Plain Journal Bearing Under Hydrodynamic Lubrication by Water
,”
Tribol. Int.
,
75
, pp.
31
38
.
You do not currently have access to this content.