Abstract

Despite the fact that the hydrodynamic lubrication is a self-controlled process, we designed control systems based on proportional integral (PI) controller, adaptive PI controller, and Deep Q network (DQN)-agent to minimize the friction torque in a conical fluid-film bearing. The bearing construction allows the shaft axial displacement and, as the result, the regulation of the bearing average clearance due to the controlled supply pressure. The main challenge is that the friction torque minimization may lead to the loss of load-carrying capacity and the contact in the shaft-bearing tribocouple. The other challenge is that random events may have an influence on the hydrodynamic lubrication parameters, therefore, changing the load-carrying capacity and the friction torque. So, the proposed control systems were designed and tested under the conditions of limited lateral shaft displacements and the action of a random external force. The tests were performed using simulation models of a controlled rotating machine in matlab software. The rotating machine simulation model includes modules of the rigid shaft, the coupling with linear axial reaction, and the conical bearing. The bearing module is based on the numerical solution of the generalized Reynolds equation and its nonlinear approximation with fully connected neural networks. The obtained results demonstrated that the application of an adaptive PI controller or a DQN agent allows decreasing friction torque in a bearing under the conditions of a random external force. The goal of a DQN agent is self-learning in contrast to an adaptive PI controller that needs to be tuned.

References

1.
Palazzolo
,
A. B.
,
Lin
,
R. R.
,
Kascak
,
A. F.
,
Montague
,
J.
, and
Alexander
,
R. M.
,
1991
, “
Test and Theory for Piezoelectric Actuator-Active Vibration Control of Rotating Machinery
,”
Am. Soc. Mech. Eng. Des. Eng. Div.
,
18
(
1
), pp.
367
374
.
2.
Aydın
,
Y.
, and
Gürleyen
,
F.
,
2016
, “
Adaptive and Non-adaptive Variable Structure Controls With Sliding Mode for Active Magnetic Bearings (AMBs) and Magnetic Levitation (MAGLEV) Systems: A Comparative Study
,”
IFAC-PapersOnLine
,
49
(
3
), pp.
447
452
.
3.
Siva Srinivas
,
R.
,
Tiwari
,
R.
, and
Kannababu
,
C.
,
2018
, “
Application of Active Magnetic Bearings in Flexible Rotordynamic Systems—A State-of-the-Art Review
,”
Mech. Syst. Signal Process.
,
106
, pp.
537
572
.
4.
Di
,
L.
, and
Lin
,
Z.
,
2014
, “
Control of a Flexible Rotor Active Magnetic Bearing Test Rig: A Characteristic Model Based All-Coefficient Adaptive Control Approach
,”
Control Theory Technol.
,
12
(
1
), pp.
1
12
.
5.
Zhao
,
J.
,
Zhang
,
H. T.
,
Fan
,
M. C.
,
Wu
,
Y.
, and
Zhao
,
H.
,
2015
, “
Control of a Constrained Flexible Rotor on Active Magnetic Bearings
,”
IFAC-PapersOnLine
,
48
(
28
), pp.
156
161
.
6.
Santos
,
I. F.
,
2011
, “
On the Future of Controllable Fluid Film Bearings
,”
Mec. Ind.
,
12
(
4
), pp.
275
281
.
7.
Breńkacz
,
Ł
,
Witanowski
,
Ł
,
Drosińska-Komor
,
M.
, and
Szewczuk-Krypa
,
N.
,
2021
, “
Research and Applications of Active Bearings: A State-of-the-Art Review
,”
Mech. Syst. Signal Process.
,
151
, p.
107423
.
8.
Qin
,
F.
,
Li
,
Y.
,
Qi
,
H.
, and
Ju
,
L.
,
2017
, “
Advances in Compact Manufacturing for Shape and Performance Controllability of Large-Scale Components—A Review
,”
Chin. J. Mech. Eng.
,
30
(
1
), pp.
7
21
.
9.
Chasalevris
,
A.
, and
Dohnal
,
F.
,
2016
, “
Improving Stability and Operation of Turbine Rotors Using Adjustable Journal Bearings
,”
Tribol. Int.
,
104
, pp.
369
382
.
10.
Chasalevris
,
A.
, and
Dohnal
,
F.
,
2016
, “
Modal Interaction and Vibration Suppression in Industrial Turbines Using Adjustable Journal Bearings
,”
J. Phys. Conf. Ser.
,
744
(
1
), pp.
1
12
.
11.
Chasalevris
,
A.
, and
Dohnal
,
F.
,
2016
, “
Enhancing Stability of Industrial Turbines Using Adjustable Partial Arc Bearings
,”
J. Phys. Conf. Ser.
,
744
(
1
).
12.
Pai
,
R.
, and
Parkins
,
D. W.
,
2018
, “
Performance Characteristics of an Innovative Journal Bearing With Adjustable Bearing Elements
,”
ASME J. Tribol.
,
140
(
4
), p.
041705
.
13.
Krodkiewski
,
J. M.
, and
Davies
,
G. J.
,
2008
, “
Modelling a New Three-Pad Active Bearing
,”
Proceedings of ASME Turbo Expo 2004
,
Vienna, Austria
,
June 14–17
, Vol. 6, pp.
799
808
.
14.
Cai
,
Z.
,
De Queiroz
,
M. S.
, and
Khonsari
,
M. M.
,
2003
, “
Adaptive Control of Active Tilting-Pad Bearings
,”
Proc. Am. Control Conf.
,
4
, pp.
2907
2912
.
15.
Wu
,
A.
,
de Queiroz
,
M. S.
, and
Cai
,
Z.
,
2007
, “
Model-Based Control of Active Tilting-Pad Bearings
,”
IEEE/ASME Trans. Mechatron.
,
12
(
6
), pp.
689
695
.
16.
Deckler
,
D.
,
Veillette
,
R.
,
Braun
,
M.
, and
Choy
,
F.
,
2004
, “
Simulation and Control of an Active Tilting-Pad Journal Bearing
,”
Tribol. Trans.
,
47
(
3
), pp.
440
458
.
17.
Martin
,
J. K.
, and
Parkins
,
D. W.
,
2001
, “
Testing of a Large Adjustable Hydrodynamic Journal Bearing
,”
Tribol. Trans.
,
44
(
4
), pp.
559
566
.
18.
Haugaard
,
A. M.
, and
Santos
,
I. F.
,
2010
, “
Multi-orifice Active Tilting-Pad Journal Bearings-Harnessing of Synergetic Coupling Effects
,”
Tribol. Int.
,
43
(
8
), pp.
1374
1391
.
19.
De Moraes
,
D. C.
, and
Nicoletti
,
R.
,
2010
, “
Hydrodynamic Bearing with Electromagnetic Actuators: Rotor Vibration Control and Limitations
,”
Proceedings of ISMA 2010—International Conference on Noise and Vibration Engineering. Incl. USD 2010
,
Heverlee, Belgium
,
Sept. 20–22
, pp.
3715
3721
.
20.
Alves
,
D. S.
,
Wu
,
M. F.
, and
Cavalca
,
K. L.
,
2019
, “
Application of Gain-Scheduled Vibration Control to Nonlinear Journal-Bearing Supported Rotor
,”
J. Sound Vib.
,
442
, pp.
714
737
.
21.
Tůma
,
J.
,
Šimek
,
J.
,
Škuta
,
J.
, and
Los
,
J.
,
2013
, “
Active Vibrations Control of Journal Bearings With the Use of Piezoactuators
,”
Mech. Syst. Signal Process.
,
36
(
2
), pp.
618
629
.
22.
Przybylowicz
,
P. M.
,
2004
, “
Active Stabilisation of a Rigid Rotor by Piezoelectrically Controlled Mobile Journal Bearing System
,”
Aust. J. Mech. Eng.
,
1
(
2
), pp.
123
128
.
23.
Santos
,
I. F.
, and
Watanabe
,
F. Y.
,
2004
, “
Compensation of Cross-coupling Stiffness and Increase of Direct Damping in Multirecess Journal Bearings Using Active Hybrid Lubrication: Part i-Theory
,”
ASME J. Tribol.
,
126
(
1
), pp.
146
155
.
24.
Santos
,
I. F.
, and
Watanabe
,
F. Y.
,
2006
, “
Lateral Dynamics and Stability Analysis of a Gas Compressor Supported by Hybrid and Active Lubricated Multirecess Journal Bearing
,”
J. Brazilian Soc. Mech. Sci. Eng.
,
28
(
4
), pp.
485
495
.
25.
Morosi
,
S.
, and
Santos
,
I. F.
,
2013
, “
Experimental Investigations of Active Air Bearings
,”
Proceedings of ASME Turbo Expo, Vol. 7 no. PARTS A and B
,
San Antonio, TX
,
June 3–7
, pp.
901
910
.
26.
Shih
,
M.-C.
, and
Shie
,
J.-S.
,
2013
, “
Recess Design and Dynamic Control of an Active Compensating Hydrostatic Bearing
,”
J. Adv. Mech. Des. Syst. Manuf.
,
7
(
4
), pp.
706
721
.
27.
Becker
,
K.
, and
Seemann
,
W.
,
2017
, “
Stability Investigations of an Elastic Rotor Supported by Actively Deformed Journal Bearings Considering the Associated Spectral System
,”
Open Arch. 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery. ISROMAC 2017
,
Maui, HI
,
Dec. 16–21
.
28.
Chasalevris
,
A.
, and
Dohnal
,
F.
,
2014
, “
Vibration Quenching in a Large Scale Rotor-Bearing System Using Journal Bearings With Variable Geometry
,”
J. Sound Vib.
,
333
(
7
), pp.
2087
2099
.
29.
Chasalevris
,
A.
, and
Dohnal
,
F.
,
2015
, “
A Journal Bearing With Variable Geometry for the Suppression of Vibrations in Rotating Shafts: Simulation, Design, Construction and Experiment
,”
Mech. Syst. Signal Process.
,
52–53
(
1
), pp.
506
528
.
30.
Zhang
,
S.
,
Xing
,
Y.
,
Xu
,
H.
,
Pei
,
S.
, and
Zhang
,
L.
,
2020
, “
An Experimental Study on Vibration Suppression of Adjustable Elliptical Journal Bearing-Rotor System in Various Vibration States
,”
Mech. Syst. Signal Process.
,
141
.
31.
Zhang
,
L.
,
Xu
,
H.
,
Zhang
,
S.
, and
Pei
,
S.
,
2020
, “
A Radial Clearance Adjustable Bearing Reduces the Vibration Response of the Rotor System During Acceleration
,”
Tribol. Int.
,
144
, pp.
106
112
.
32.
Lillicrap
,
T. P.
,
Hunt
,
J.J.
,
Pritzel
,
A.
,
Hees
,
N.
,
Erez
,
T.
,
Tassa
,
Y.
,
Silver
,
D.
, and
Wierstra
,
D.
,
2016
, “
Continuous Control With Deep Reinforcement Learning
,”
4th International Conference on Learning Representations. ICLR 2016—Conference Track Proceedings.
,
San Juan, Puerto Rico
,
May 2–4
.
33.
Buşoniu
,
L.
,
de Bruin
,
T.
,
Tolić
,
D.
,
Kober
,
J.
, and
Palunko
,
I.
,
2018
, “
Reinforcement Learning for Control: Performance, Stability, and Deep Approximators
,”
Annu. Rev. Control
,
46
, pp.
8
28
.
34.
Sriram
,
T. B.
,
2021
,
Vision-Based Reinforcement Learning Controller Of Robotic Arm Manipulator: Buzz Wire Demonstrator, Student thesis: Master, Mechanical Engineering, Eindhoven University of Technology
.
35.
Yeo
,
S.
,
Naing
,
Y.
,
Kim
,
T.
, and
Oh
,
S.
,
2021
, “
Achieving Balanced Load Distribution With Reinforcement Learning-Based Switch Migration in Distributed SDN Controllers
,”
Electron.
,
10
(
2
), pp.
1
16
.
36.
Kim
,
J. B.
,
Lim
,
H. K.
,
Kim
,
C. M.
,
Kim
,
M. S.
,
Hong
,
Y. G.
, and
Han
,
Y. H.
,
2019
, “
Imitation Reinforcement Learning-Based Remote Rotary Inverted Pendulum Control in Openflow Network
,”
IEEE Access
,
7
, pp.
36682
36690
.
37.
Shabestary
,
S. M. A.
, and
Abdulhai
,
B.
,
2018
, “
Deep Learning vs. Discrete Reinforcement Learning for Adaptive Traffic Signal Control
,”
IEEE Conference on Intelligent Transport System Proceedings, ITSC
,
Maui, HI
,
Nov. 4–7
, pp.
286
293
.
38.
Zhang
,
Y.
,
Sun
,
P.
,
Yin
,
Y.
,
Lin
,
L.
, and
Wang
,
X.
,
2018
, “
Human-Like Autonomous Vehicle Speed Control by Deep Reinforcement Learning With Double Q-Learning
,”
IEEE Intelligent Vehicles Symposium Proceedings
,
Changshu, Suzhou, China
,
June 26–30
, pp.
1251
1256
.
39.
Berglund
,
D.
, and
Larsson
,
N.
,
2021
,
Controlling a Hydraulic Systemusing Reinforcement Learning, Master thesis:, Mechanical Engineering – Mechatronics, Linköping University
.
40.
Zhang
,
T.
,
Wu
,
C.
,
He
,
Y.
,
Zou
,
Y.
, and
Liao
,
C.
,
2021
, “
Gain Parameters Optimization Strategy of Cross-Coupled Controller Based on Deep Reinforcement Learning
,”
Eng. Optim.
, pp.
1
16
.
41.
Hori
,
Y.
,
2006
,
Hydrodynamic Lubrication
, 1st ed.,
Springer
,
Tokyo
.
42.
Friswell
,
M. I.
,
Penny
,
J. E. T.
,
Garvey
,
S. D.
, and
Lees
,
A. W.
,
2010
,
Dynamics of Rotating Machines
,
Cambridge University Press
.
43.
Babin
,
A.
, and
Polyakov
,
R.
,
2020
, “
Imitation Model of Unbalanced Rotor on Fluid-Film Bearings
,”
Vib. Proced.
,
32
, pp.
38
44
.
44.
Kornaev
,
A. V.
,
Kornaev
,
N. V.
,
Kornaeva
,
E. P.
, and
Savin
,
L. A.
,
2017
, “
Application of Artificial Neural Networks to Calculation of Oil Film Reaction Forces and Dynamics of Rotors on Journal Bearings
,”
Int. J. Rotating Mach.
,
2017
, pp.
1
11
.
45.
Korn
,
G. A.
, and
Korn
,
T. M.
,
2000
,
Mathematical Handbook for Scientists and Engineers. Definitions, Theorems, and Formulas for Reference and Review
,
Dover Publications
,
New York
.
46.
Korneev
,
A.
, and
Li
,
S.
,
2017
, “
Computation of Pressure and Temperature Fields in Lubricating Layer of Tapered Hydrostatic Dynamic Bearings
,”
Bull. Bryansk state Tech. Univ.
,
2017
(
1
), pp.
12
24
.
47.
Hannon
,
W. M.
, and
Braun
,
M. J.
,
2007
, “
Numerical Solution of a Fully Thermally Coupled Generalized Universal Reynolds Equation (Gure) and Its Application. Part 1: Conical Bearings
,”
Tribol. Trans.
,
50
(
4
), pp.
540
557
.
48.
Mnih
,
V.
,
Kavukcuoglu
,
K.
,
Silver
,
D.
,
Graves
,
A.
,
Antonoglou
,
I.
,
Wierstra
,
D.
, and
Riedmiller
,
M.
,
2013
, “
Playing Atari With Deep Reinforcement Learning
,”
NIPS Deep Learning Workshop 2013
,
Lake Tahoe, NV
,
Dec. 9
.
49.
Train DQN Agent to Swing Up and Balance Pendulum—MATLAB & Simulink
,” https://www.mathworks.com/help/reinforcement-learning/ug/train-dqn-agent-to-swing-up-and-balance-pendulum.html, Accessed December 25, 2021.
You do not currently have access to this content.