Abstract

Misalignment is common in hydrodynamic journal bearings and the causes of it can be diversified, making the lubrication performance exhibits stochasticity. Lubricant viscosity often heavily depends on temperature, which may vary during service and result in unexpected deviations. This article analyzes the stochastic lubrications of a cylindrical hydrodynamic journal bearing with misalignment under uncertainties. The stochastic Reynolds equation governing the misaligned journal bearing is discretized by the polynomial chaos expansion (PCE), an efficient uncertainty tracking tool, and then solved by the finite difference method to obtain sampled lubrication. The crude Monte Carlo simulation is used to verify the performance of the PCE frame. Various critical lubrication performance parameters are studied comprehensively by the ensemble mean, standard deviation, probability density function, and cumulative distribution function. Insightful inspections are provided on the stochastic results, and it is found that the misalignment and different stochastic parameters may cause significant effects on the lubrication performance. The new findings in the present study will guide the robust design and analysis of general hydrodynamic journal bearings.

References

1.
Ahmed
,
A.
, and
El-Shafei
,
A.
,
2008
, “
Effect of Misalignment on the Characteristics of Journal Bearings
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
042501
.
2.
Ma
,
J.
,
Zhang
,
H.
,
Lou
,
S.
,
Chu
,
F.
,
Shi
,
Z.
,
Gu
,
F.
, and
Ball
,
A. D.
,
2021
, “
Analytical and Experimental Investigation of Vibration Characteristics Induced by Tribofilm-Asperity Interactions in Hydrodynamic Journal Bearings
,”
Mech. Syst. Signal Process
,
150
, p.
107227
.
3.
Kim
,
S.
,
Shin
,
D.
, and
Palazzolo
,
A. B.
,
2021
, “
A Review of Journal Bearing Induced Nonlinear Rotordynamic Vibrations
,”
ASME J. Tribol.
,
143
(
11
), p.
111802
.
4.
Zhang
,
Y.
,
Li
,
X.
,
Dang
,
C.
,
Hei
,
D.
,
Wang
,
X.
, and
,
Y.
,
2019
, “
A Semianalytical Approach to Nonlinear Fluid Film Forces of a Hydrodynamic Journal Bearing With Two Axial Grooves
,”
Appl. Math. Model.
,
65
, pp.
318
332
.
5.
Zhou
,
W.
,
Wei
,
X.
,
Wang
,
L.
, and
Wu
,
G.
,
2017
, “
A Superlinear Iteration Method for Calculation of Finite Length Journal Bearing's Static Equilibrium Position
,”
R. Soc. Open Sci.
,
4
(
5
), p.
161059
.
6.
Zhu
,
S.
,
Sun
,
J.
,
Li
,
B.
,
Zhao
,
X.
,
Wang
,
H.
,
Teng
,
Q.
,
Ren
,
Y.
, and
Zhu
,
G.
,
2020
, “
Research on Turbulent Lubrication of Misaligned Journal Bearing Considering the Axial Motion of Journal
,”
ASME J. Tribol.
,
142
(
2
), p.
021802
.
7.
Sun
,
X.
,
Sepahvand
,
K. K.
, and
Marburg
,
S.
,
2021
, “
Stability Analysis of Rotor-Bearing Systems Under the Influence of Misalignment and Parameter Uncertainty
,”
Appl. Sci.
,
11
(
17
), p.
7918
.
8.
Jang
,
J. Y.
, and
Khonsari
,
M. M.
,
2015
, “
On the Characteristics of Misaligned Journal Bearings
,”
Lubricants
,
3
(
1
), pp.
27
53
.
9.
Pierre
,
I.
,
de France
,
E.
,
Bouyer
,
J.
, and
Fillon
,
M.
,
2004
, “
Thermohydrodynamic Behavior of Misaligned Plain Journal Bearings: Theoretical and Experimental Approaches
,”
Tribol. Trans.
,
47
(
4
), pp.
594
604
.
10.
Ebrat
,
O.
,
Mourelatos
,
Z. P.
,
Vlahopoulos
,
N.
, and
Vaidyanathan
,
K.
,
2004
, “
Calculation of Journal Bearing Dynamic Characteristics Including Journal Misalignment and Bearing Structural Deformation
,”
Tribol. Trans.
,
47
(
1
), pp.
94
102
.
11.
Xie
,
Z.
,
Shen
,
N.
,
Zhu
,
W.
,
Tian
,
W.
, and
Hao
,
L.
,
2021
, “
Theoretical and Experimental Investigation on the Influences of Misalignment on the Lubrication Performances and Lubrication Regimes Transition of Water Lubricated Bearing
,”
Mech. Syst. Signal Process
,
149
, p.
107211
.
12.
Sun
,
J.
, and
Gui
,
C.
,
2004
, “
Hydrodynamic Lubrication Analysis of Journal Bearing Considering Misalignment Caused by Shaft Deformation
,”
Tribol. Int.
,
37
(
10
), pp.
841
848
.
13.
Bouyer
,
J.
, and
Fillon
,
M.
,
2002
, “
An Experimental Analysis of Misalignment Effects on Hydrodynamic Plain Journal Bearing Performances
,”
ASME J. Tribol.
,
124
(
2
), pp.
313
319
.
14.
He
,
Z.
,
Zhang
,
J.
,
Xie
,
W.
,
Li
,
Z.
, and
Zhang
,
G.
,
2012
, “
Misalignment Analysis of Journal Bearing Influenced by Asymmetric Deflection, Based on a Simple Stepped Shaft Model
,”
J. Zhejiang Univ., Sci., A
,
13
(
9
), pp.
647
664
.
15.
Lv
,
F.
,
Jiao
,
C.
,
Ta
,
N.
, and
Rao
,
Z.
,
2018
, “
Mixed-Lubrication Analysis of Misaligned Bearing Considering Turbulence
,”
Tribol. Int.
,
119
, pp.
19
26
.
16.
Das
,
S.
, and
Guha
,
S. K.
,
2019
, “
Numerical Analysis of Steady-State Performance of Misaligned Journal Bearings With Turbulent Effect
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
2
), p.
81
.
17.
Zhu
,
S.
,
Sun
,
J.
,
Li
,
B.
, and
Zhu
,
G.
,
2020
, “
Thermal Turbulent Lubrication Analysis of Rough Surface Journal Bearing With Journal Misalignment
,”
Tribol. Int.
,
144
, p.
106109
.
18.
Nikolakopoulos
,
P. G.
, and
Papadopoulos
,
C. A.
,
2008
, “
A Study of Friction in Worn Misaligned Journal Bearings Under Severe Hydrodynamic Lubrication
,”
Tribol. Int.
,
41
(
6
), pp.
461
472
.
19.
Alves
,
D. S.
,
Daniel
,
G. B.
,
Castro
,
H. F. D.
,
Machado
,
T. H.
,
Cavalca
,
K. L.
,
Gecgel
,
O.
,
Dias
,
J. P.
, and
Ekwaro-Osire
,
S.
,
2020
, “
Uncertainty Quantification in Deep Convolutional Neural Network Diagnostics of Journal Bearings With Ovalization Fault
,”
Mech. Mach. Theory
,
149
, p.
103835
.
20.
Fu
,
C.
,
Xu
,
Y.
,
Yang
,
Y.
,
Lu
,
K.
,
Gu
,
F.
, and
Ball
,
A.
,
2020
, “
Dynamics Analysis of a Hollow-Shaft Rotor System With an Open Crack Under Model Uncertainties
,”
Commun. Nonlinear Sci. Numer. Simul.
,
83
, p.
105102
.
21.
da Silva
,
H. A. P.
, and
Nicoletti
,
R.
,
2019
, “
Design of Tilting-Pad Journal Bearings Considering Bearing Clearance Uncertainty and Reliability Analysis
,”
ASME J. Tribol.
,
141
(
1
), p.
011703
.
22.
Ruiz
,
R. O.
, and
Diaz
,
S. E.
, 2016, “
Effect of Uncertainties in the Estimation of Dynamic Coefficients on Tilting Pad Journal Bearings
,”
Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition
,
Phoenix, AZ
,
Nov. 11–17
,
American Society of Mechanical Engineers Digital Collection
, p.
V04BT05A030
.
23.
Fu
,
C.
,
Zhu
,
W.
,
Yang
,
Y.
,
Zhao
,
S.
, and
Lu
,
K.
,
2022
, “
Surrogate Modeling for Dynamic Analysis of an Uncertain Notched Rotor System and Roles of Chebyshev Parameters
,”
J. Sound Vib.
,
524
,
116755
.
24.
Wale
,
G.
, and
Mba
,
D.
,
2005
, “
Identifying and Minimising Uncertainty for Experimental Journal Bearing Studies
,”
Int. J. Rotating Mach.
,
2005
(
3
), pp.
221
231
.
25.
Li
,
Z.
,
Jiang
,
J.
, and
Tian
,
Z.
,
2017
, “
Stochastic Dynamics of a Nonlinear Misaligned Rotor System Subject to Random Fluid-Induced Forces
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
1
), p.
011004
.
26.
Christensen
,
H.
,
1969
, “
Stochastic Models for Hydrodynamic Lubrication of Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
184
(
1
), pp.
1013
1026
.
27.
Mo
,
F.
,
Shen
,
C.
,
Zhou
,
J.
, and
Khonsari
,
M. M.
,
2017
, “
Statistical Analysis of the Influence of Imperfect Texture Shape and Dimensional Uncertainty on Surface Texture Performance
,”
IEEE Access
,
5
, pp.
27023
27035
.
28.
Dobrica
,
M. B.
,
Fillon
,
M.
, and
Maspeyrot
,
P.
,
2006
, “
Mixed Elastohydrodynamic Lubrication in a Partial Journal Bearing—Comparison Between Deterministic and Stochastic Models
,”
ASME J. Tribol.
,
128
(
4
), pp.
778
788
.
29.
Wierzcholski
,
K.
, and
Miszczak
,
A.
,
2004
, “
Stochastic Model for Turbulent Lubrication of Slide Journal Bearing in Ship Technology
,”
Mar. Technol. Trans.
,
15
, pp.
455
466
.
30.
Cavalini
,
A. A.
, Jr.
,
Lara-Molina
,
F. A.
,
Sales
,
T. D. P.
,
Koroishi
,
E. H.
, and
Steffen
,
V.
, Jr.
,
2015
, “
Uncertainty Analysis of a Flexible Rotor Supported by Fluid Film Bearings
,”
Lat Am. J. Solids Struct.
,
12
(
8
), pp.
1487
1504
.
31.
Visnadi
,
L. B.
, and
de Castro
,
H. F.
,
2019
, “
Influence of Bearing Clearance and Oil Temperature Uncertainties on the Stability Threshold of Cylindrical Journal Bearings
,”
Mech. Mach. Theory
,
134
, pp.
57
73
.
32.
Tyminski
,
N. C.
,
Tuckmantel
,
F. W.
,
Cavalca
,
K. L.
, and
de Castro
,
H. F.
,
2017
, “
Bayesian Inference Applied to Journal Bearing Parameter Identification
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
8
), pp.
2983
3004
.
33.
Koutsovasilis
,
P.
, and
Schweizer
,
B.
,
2014
, “
Parameter Variation and Data Mining of Oil-Film Bearings: A Stochastic Study on the Reynolds’s Equation of Lubrication
,”
Arch. Appl. Mech.
,
84
(
5
), pp.
671
692
.
34.
Maharshi
,
K.
,
Mukhopadhyay
,
T.
,
Roy
,
B.
,
Roy
,
L.
, and
Dey
,
S.
,
2018
, “
Stochastic Dynamic Behaviour of Hydrodynamic Journal Bearings Including the Effect of Surface Roughness
,”
Int. J. Mech. Sci.
,
142
, pp.
370
383
.
35.
Fu
,
C.
,
Zhu
,
W.
,
Zheng
,
Z.
,
Sun
,
C.
,
Yang
,
Y.
, and
Lu
,
K.
,
2022
, “
Nonlinear Responses of a Dual-Rotor System With Rub-Impact Fault Subject to Interval Uncertain Parameters
,”
Mech. Syst. Signal Process
,
170
, p.
108827
.
36.
Jacquelin
,
E.
,
Friswell
,
M. I.
,
Adhikari
,
S.
,
Dessombz
,
O.
, and
Sinou
,
J.-J.
,
2016
, “
Polynomial Chaos Expansion With Random and Fuzzy Variables
,”
Mech. Syst. Signal Process
,
75
, pp.
41
56
.
37.
Garoli
,
G. Y.
, and
Castro
,
H.
, 2016, “
Stochastic Collocation Approach for Evaluation of Journal Bearing Dynamic Coefficients
,”
Proceedings of the Proceedings of the 3rd International Symposium on Uncertainty Quantification and Stochastic Modeling
,
Maresias, Sao Paulo, Brazil
,
Feb. 15–19
, pp.
1
10
.
38.
Fu
,
C.
,
Xu
,
Y.
,
Yang
,
Y.
,
Lu
,
K.
,
Gu
,
F.
, and
Ball
,
A.
,
2020
, “
Response Analysis of an Accelerating Unbalanced Rotating System With Both Random and Interval Variables
,”
J. Sound Vib.
,
466
, p.
115047
.
39.
Wang
,
X.
,
Zhou
,
L.
,
Huang
,
M.
,
Yue
,
X.
, and
Xu
,
Q.
,
2018
, “
Numerical Investigation of Journal Misalignment on the Static and Dynamic Characteristics of Aerostatic Journal Bearings
,”
Measurement
,
128
, pp.
314
324
.
40.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
2003
,
Stochastic Finite Elements: A Spectral Approach
,
Courier Corporation
,
New York
.
41.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
42.
Blatman
,
G.
, and
Sudret
,
B.
,
2011
, “
Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression
,”
J. Comput. Phys.
,
230
(
6
), pp.
2345
2367
.
43.
Li
,
J.
,
Zhang
,
G.
,
Huang
,
Y.
,
Chen
,
R.
,
Yan
,
S.
, and
Cao
,
H.
,
2017
, “
Influence of Non-Gaussian-Distributed Surface Roughness on the Static Performance of Slider Bearings
,”
Tribol. Trans.
,
60
(
4
), pp.
739
752
.
44.
Ma
,
J.
,
Zhang
,
H.
,
Shi
,
Z.
,
Chu
,
F.
,
Gu
,
F.
, and
Ball
,
A. D.
,
2021
, “
Modelling Acoustic Emissions Induced by Dynamic Fluid-Asperity Shearing in Hydrodynamic Lubrication Regime
,”
Tribol. Int.
,
153
, p.
106590
.
45.
Scaraggi
,
M.
,
Angerhausen
,
J.
,
Dorogin
,
L.
,
Murrenhoff
,
H.
, and
Persson
,
B. N. J.
,
2018
, “
Influence of Anisotropic Surface Roughness on Lubricated Rubber Friction: Extended Theory and an Application to Hydraulic Seals
,”
Wear
,
410–411
, pp.
43
62
.
You do not currently have access to this content.