Abstract

Rotary compressors are designed more and more compact, and the compressor cylinder’s ambient pressure is designed very high to facilitate oil separation and improve efficiency. However, these designs cause the working condition of the thrust bearing becoming harsher, and severe wear may occur. The present study is aimed at mitigating its wear condition through surface texturing. Based on a transient tribo-dynamics model considering the coupling effect of the journal and thrust bearings, a texture optimization study for the thrust bearing is conducted, in which three different stochastic optimization algorithms are utilized. The results show that thrust bearings with optimized textures have significantly reduced contact forces and wear under a high working frequency due to an extra hydrodynamic support around the texture dimples. The optimized texture designs are fabricated on the thrust bearing surfaces by a high-accurate picosecond laser machine, and their performance is assessed through experiments using a compressor performance test platform. The experiment results confirm that the textured thrust bearing has a lower wear depth. Moreover, the coefficient of performance (COP) of the testing compressor with textured thrust bearing is increased while its input power decreases, which implies a reduced friction force and a higher energy efficiency.

References

1.
Lyu
,
B.
,
Meng
,
X.
,
Zhang
,
R.
, and
Cui
,
Y.
,
2020
, “
A Comprehensive Numerical Study on Friction Reduction and Wear Resistance by Surface Coating on Cam/Tappet Pairs Under Different Conditions
,”
Coatings
,
10
(
5
), p.
485
.
2.
Tas
,
M.
,
Banerji
,
A.
,
Lou
,
M.
,
Lukitsch
,
M.
, and
Alpas
,
A.
,
2017
, “
Roles of Mirror-Like Surface Finish and DLC Coated Piston Rings on Increasing Scuffing Resistance of Cast Iron Cylinder Liners
,”
Wear
,
376–377
(Part B), pp.
1558
1569
.
3.
Allen
,
Q.
, and
Raeymaekers
,
B.
,
2020
, “
The Effect of Texture Floor Profile on the Lubricant Film Thickness in a Textured Hard-On-Soft Bearing With Relevance to Prosthetic Hip Implants
,”
ASME J. Tribol.
,
143
(
2
), p.
021801
.
4.
Liu
,
R.
,
Jing
,
L.
,
Meng
,
X.
, and
Lyu
,
B.
,
2021
, “
Mixed Elastohydrodynamic Analysis of a Coupled Journal-Thrust Bearing System in a Rotary Compressor Under High Ambient Pressure
,”
Tribol. Int.
,
159
(
1
), p.
106943
.
5.
Gropper
,
D.
,
Wang
,
L.
, and
Harvey
,
T. J.
,
2016
, “
Hydrodynamic Lubrication of Textured Surfaces: A Review of Modeling Techniques and key Findings
,”
Tribol. Int.
,
94
(
1
), pp.
509
529
.
6.
Fowell
,
M. T.
,
Medina
,
S.
,
Olver
,
A. V.
,
Spikes
,
H. A.
, and
Pegg
,
I. G.
,
2012
, “
Parametric Study of Texturing in Convergent Bearings
,”
Tribol. Int.
,
52
(
1
), pp.
7
16
.
7.
Zeng
,
F.
,
Cheng
,
Y.
,
Wan
,
Z.
,
Long
,
Z.
,
Zhang
,
Z.
, and
Tang
,
Y.
,
2022
, “
Tribological Performance of Circular-Concave-and-Spherical-Convex Compound Texture Under Hydrodynamic Lubrication
,”
ASME J. Tribol.
,
144
(
4
), p. 041805.
8.
Chen
,
X.
,
Huang
,
X.
,
Wan
,
Z.
,
Lu
,
L.
, and
Zhang
,
Z.
,
2020
, “
Tribological Performance of Nickel-Plated Regular Hexagonal Texture on a Brass Surface Under Boundary Lubrication
,”
ASME J. Tribol.
,
142
(
5
), p.
041805
.
9.
Kumar
,
V.
, and
Sharma
,
S. C.
,
2020
, “
Performance Analysis of Rough Surface Hybrid Thrust Bearing with Elliptical Dimples
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
235
(
6
), pp.
1101
1113
.
10.
Agrawal
,
N.
, and
Sharma
,
S. C.
,
2021
, “
Performance of Textured Spherical Thrust Hybrid Bearing Operating With Shear Thinning and Piezoviscous Lubricants
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
11.
Chalkiopoulos
,
M.
,
Charitopoulos
,
A.
,
Fillon
,
M.
, and
Papadopoulos
,
C. I.
,
2020
, “
Effects of Thermal and Mechanical Deformations on Textured Thrust Bearings Optimally Designed by a THD Calculation Method
,”
Tribol. Int.
,
148
(
1
), p.
106303
.
12.
Zhang
,
H.
,
Dong
,
G.-N.
,
Hua
,
M.
, and
Chin
,
K.-S.
,
2016
, “
Improvement of Tribological Behaviors by Optimizing Concave Texture Shape Under Reciprocating Sliding Motion
,”
ASME J. Tribol.
,
139
(
1
), p.
011701
.
13.
Zhang
,
H.
,
Liu
,
Y.
,
Hafezi
,
M.
,
Hua
,
M.
, and
Dong
,
G.
,
2020
, “
A Distribution Design for Circular Concave Textures on Sectorial Thrust Bearing Pads
,”
Tribol. Int.
,
149
(
1
), p.
105733
.
14.
Gao
,
Q.
,
Lu
,
L.
,
Chen
,
W.
, and
Wang
,
G.
,
2018
, “
Optimal Design of an Annular Thrust air Bearing Using Parametric Computational Fluid Dynamics Model and Genetic Algorithms
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
232
(
10
), pp.
1203
1214
.
15.
Gropper
,
D.
,
Harvey
,
T. J.
, and
Wang
,
L.
,
2018
, “
Numerical Analysis and Optimization of Surface Textures for a Tilting pad Thrust Bearing
,”
Tribol. Int.
,
124
(
1
), pp.
134
144
.
16.
Wang
,
W.-Z.
,
Huang
,
Z.
,
Shen
,
D.
,
Kong
,
L.
, and
Li
,
S.
,
2013
, “
The Effect of Triangle-Shaped Surface Textures on the Performance of the Lubricated Point-Contacts
,”
ASME J. Tribol.
,
135
(
2
), p.
021503
.
17.
Shen
,
C.
, and
Khonsari
,
M. M.
,
2015
, “
Numerical Optimization of Texture Shape for Parallel Surfaces Under Unidirectional and Bidirectional Sliding
,”
Tribol. Int.
,
82
(
1
), pp.
1
11
.
18.
Shen
,
C.
, and
Khonsari
,
M. M.
,
2016
, “
Texture Shape Optimization for Seal-Like Parallel Surfaces: Theory and Experiment
,”
Tribol. Trans.
,
59
(
4
), pp.
698
706
.
19.
Uddin
,
M. S.
, and
Liu
,
Y. W.
,
2016
, “
Design and Optimization of a new Geometric Texture Shape for the Enhancement of Hydrodynamic Lubrication Performance of Parallel Slider Surfaces
,”
Biosurface Biotribol.
,
2
(
2
), pp.
59
69
.
20.
Zhang
,
H.
,
Hua
,
M.
,
Dong
,
G.-Z.
,
Zhang
,
D.-Y.
,
Chen
,
W.-J.
, and
Dong
,
G. N.
,
2017
, “
Optimization of Texture Shape Based on Genetic Algorithm Under Unidirectional Sliding
,”
Tribol. Int.
,
115
(
1
), pp.
222
232
.
21.
Atwal
,
J.
, and
Pandey
,
R.
,
2021
, “
Performance Analysis of Thrust pad Bearing Using Micro-Rectangular Pocket and Bionic Texture
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
235
(
6
), pp.
1232
1250
.
22.
Zhirong
,
T.
,
Xiangkai
,
M.
,
Yi
,
M.
, and
Xudong
,
P.
,
2021
, “
Shape Optimization of Hydrodynamic Textured Surfaces for Enhancing Load-Carrying Capacity Based on Level set Method
,”
Tribol. Int.
,
162
(
1
), p.
107136
.
23.
Arslan
,
A.
,
Masjuki
,
H.
,
Varman
,
M.
,
Kalam
,
M.
,
Quazi
,
M.
,
Al Mahmud
,
K.
,
Gulzar
,
M.
, and
Habibullah
,
M.
,
2015
, “
Effects of Texture Diameter and Depth on the Tribological Performance of DLC Coating Under Lubricated Sliding Condition
,”
Appl. Surf. Sci.
,
356
(
1
), pp.
1135
1149
.
24.
Li
,
K.
,
Yao
,
Z.
,
Hu
,
Y.
, and
Gu
,
W.
,
2014
, “
Friction and Wear Performance of Laser Peen Textured Surface Under Starved Lubrication
,”
Tribol. Int.
,
77
(
1
), pp.
97
105
.
25.
Holland
,
J. H.
,
1992
,
Adaptation in Natural and Artificial Systems: an Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence
,
MIT Press
,
Cambridge, MA
.
26.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN'95-International Conference on Neural Networks
,
IEEE
, pp.
1942
1948
.
27.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
.
28.
Jakobsson
,
B.
,
1957
,
The Finite Journal Bearing, Considering Vaporization
,
Transactions of Chalmers University of Technology
,
Gothenburg, Sweden
, p.
190
.
29.
Olsson
,
K.
,
1965
,
Cavitation in Dynamically Loaded Bearings
,
Transactions of Chalmers University of Technology
,
Gothenburg, Sweden
, p.
308
.
30.
Giacopini
,
M.
,
Fowell
,
M. T.
,
Dini
,
D.
, and
Strozzi
,
A.
,
2010
, “
A Mass-Conserving Complementarity Formulation to Study Lubricant Films in the Presence of Cavitation
,”
ASME J. Tribol.
,
132
(
4
), p.
041702
.
31.
Patir
,
N.
, and
Cheng
,
H.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Tech.
,
100
(
1
), pp.
12
17
.
32.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Tech.
,
101
(
2
), pp.
220
229
.
33.
Wu
,
C.
, and
Zheng
,
L.
,
1989
, “
An Average Reynolds Equation for Partial Film Lubrication with a Contact Factor
,”
ASME J. Tribol.
,
111
(
1
), pp.
188
191
.
34.
Woloszynski
,
T.
,
Podsiadlo
,
P.
, and
Stachowiak
,
G. W.
,
2015
, “
Efficient Solution to the Cavitation Problem in Hydrodynamic Lubrication
,”
Tribol. Lett.
,
58
(
1
), pp.
1
11
.
35.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
,
46
(
3
), pp.
383
390
.
36.
Archard
,
J.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
37.
Cupillard
,
S.
,
Glavatskih
,
S.
, and
Cervantes
,
M.
,
2010
, “
Inertia Effects in Textured Hydrodynamic Contacts
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
224
(
8
), pp.
751
756
.
38.
Lee
,
J.
, and
Perkins
,
D.
,
2020
, “
A Simulated Annealing Algorithm with a Dual Perturbation Method for Clustering
,”
Pattern Recogn.
,
112
(
1
), p.
107713
.
39.
Gherca
,
A.
,
Fatu
,
A.
,
Hajjam
,
M.
, and
Maspeyrot
,
P.
,
2016
, “
Influence of Surface Texturing on the Hydrodynamic Performance of a Thrust Bearing Operating in Steady-State and Transient Lubrication Regime
,”
Tribol. Int.
,
102
(
1
), pp.
305
318
.
40.
Bellón Vallinot
,
I.
,
de la Guerra Ochoa
,
E.
,
Echávarri Otero
,
J.
,
Chacón Tanarro
,
E.
,
Fernández Martínez
,
I.
, and
Santiago Varela
,
J. A.
,
2020
, “
Individual and Combined Effects of Introducing DLC Coating and Textured Surfaces in Lubricated Contacts
,”
Tribol. Int.
,
151
(
1
), p.
106440
.
41.
Predescu
,
A.
,
Pascovici
,
M. D.
,
Cicone
,
T.
,
Popescu
,
C. S.
,
Grigoriu
,
C.
, and
Dragulinescu
,
D.
,
2010
, “
Friction Evaluation of Lubricated Laser-Textured Surfaces
,”
Lubr. Sci.
,
22
(
10
), pp.
431
442
.
42.
Rajab
,
F. H.
,
Liauw
,
C. M.
,
Benson
,
P. S.
,
Li
,
L.
, and
Whitehead
,
K. A.
,
2017
, “
Production of Hybrid Macro/Micro/Nano Surface Structures on Ti6Al4V Surfaces by Picosecond Laser Surface Texturing and Their Antifouling Characteristics
,”
Colloids Surf. B: Biointerfaces
,
160
(
1
), pp.
688
696
.
43.
Chen
,
T.
,
Ji
,
J.
,
Fu
,
Y.
,
Tian
,
P.
,
Zhou
,
J.
, and
Yang
,
X.
,
2021
, “
Tribological Analysis of Picosecond Laser Partially Textured Thrust Bearings With Circular Grooves Machined: Theory and Experiment
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
232
(
1
), pp.
105
122.
.
44.
Xing
,
W.
,
Li
,
Z.
,
Yang
,
H.
,
Li
,
X.
,
Wang
,
X.
, and
Li
,
N.
,
2019
, “
Anti-Icing Aluminum Alloy Surface With Multi-Level Micro-Nano Textures Constructed by Picosecond Laser
,”
Mater. Des.
,
183
(
1
), p.
108156
.
45.
Gao
,
Y.-F.
,
Yu
,
C.-Y.
,
Han
,
B.
,
Ehrhardt
,
M.
,
Lorenz
,
P.
,
Xu
,
L.-F.
, and
Zhu
,
R.-H.
,
2020
, “
Picosecond Laser-Induced Periodic Surface Structures (LIPSS) on Crystalline Silicon
,”
Surf. Interfaces
,
19
(
1
), p.
100538
.
46.
Mao
,
B.
,
Siddaiah
,
A.
,
Liao
,
Y.
, and
Menezes
,
P. L.
,
2020
, “
Laser Surface Texturing and Related Techniques for Enhancing Tribological Performance of Engineering Materials: A Review
,”
J. Manuf. Process.
,
53
, pp.
153
173
.
47.
Wu
,
J.
,
Chen
,
Z.
,
Lin
,
J.
, and
Li
,
J.
,
2018
, “
Experimental Analysis on R290 Solubility and R290/oil Mixture Viscosity in oil Sump of the Rotary Compressor
,”
Int. J. Refrig.
,
94
, pp.
24
32
.
You do not currently have access to this content.