Abstract

A first cavitation modeling with thermal effects for oil/refrigerant solutions lubricated elastohydrodynamic point contacts is reported in this work. The solubility of the oil/refrigerant system is introduced into the generalized Reynolds equation coupled with the elasticity equation and the energy conservation equation. The numerical results show a very good agreement with the published experimental results concerning film thickness prediction. Moreover, the present model describes the cavitation region on a physical basis. A discussion with other cavitation models from the literature is proposed. It puts into light the necessity of taking into account the solubility of the refrigerant into oil for such problems. Compared to pure oil, oil/refrigerant solutions can potentially reduce the amount of liquid oil for the next contact due to its higher cavitation intensity.

References

1.
Wu
,
X.
,
Xing
,
Z.
,
He
,
Z.
,
Wang
,
X.
, and
Chen
,
W.
,
2017
, “
Effects of Lubricating Oil on the Performance of a Semi-Hermetic Twin Screw Refrigeration Compressor
,”
Appl. Therm. Eng.
,
112
, pp.
340
351
.
2.
Akei
,
M.
, and
Mizuhara
,
K.
,
1997
, “
The Elastohydrodynamic Properties of Lubricants in Refrigerant Environments
,”
Tribol. Trans.
,
40
(
1
), pp.
1
10
.
3.
Akei
,
M.
,
Mizuhara
,
K.
,
Taki
,
T.
, and
Yamamoto
,
T.
,
1996
, “
Evaluation of Film-Forming Capability of Refrigeration Lubricants in Pressurized Refrigerant Atmosphere
,”
Wear
,
196
(
1–2
), pp.
180
187
.
4.
Jonsson
,
U.
, and
Höglund
,
E.
,
1993
, “
Determination of Viscosities of Oil-Refrigerant Mixtures at Equilibrium by Means of Film Thickness Measurements
,”
Ashrae Trans.
,
99
(
2
), pp.
1129
1136
.
5.
Jonsson
,
U. J.
,
1999
, “
Lubrication Limits of Rolling Element Bearings in Refrigeration Compressors
,”
Tribol. Finn. J. Tribol.
,
18
(
1
), pp.
23
30
.
6.
Morales-Espejel
,
G. E.
,
Wallin
,
H. H.
,
Hauleitner
,
R.
, and
Arvidsson
,
M.
,
2018
, “
Progress in Rolling Bearing Technology for Refrigerant Compressors
,”
Proc. Inst. Mech. Eng. Part C
,
232
(
16
), pp.
2948
2961
.
7.
Bair
,
S.
,
Baker
,
M.
, and
Pallister
,
D. M.
,
2017
, “
The High-Pressure Viscosity of Refrigerant/Oil Systems: The High-Pressure Viscosity of Refrigerant/Oil Systems
,”
Lubr. Sci.
,
29
(
6
), pp.
377
394
.
8.
Bair
,
S.
,
Baker
,
M.
, and
Pallister
,
D. M.
,
2017
, “
Revisiting the Compressibility of Oil/Refrigerant Lubricants
,”
ASME J. Tribol.
,
139
(
2
), p.
024501
.
9.
Bair
,
S.
,
Habchi
,
W.
,
Baker
,
M.
, and
Pallister
,
D. M.
,
2017
, “
Quantitative Elastohydrodynamic Film-Forming for an Oil/Refrigerant System
,”
ASME J. Tribol.
,
139
(
6
), p.
061501
.
10.
Gunsel
,
S.
, and
Pozebanchuk
,
M.
,
1999
,
Elastohydrodynamic Lubrication With Polyolester Lubricants and HFC Refrigerants
, Vol. 1,
Air Conditioning and Refrigeration Technology Institute
,
Arlington, VA
, pp.
23810
23102
.
11.
Jonsson
,
U.
,
1998
, “
Elastohydrodynamic Lubrication and Lubricant Rheology in Refrigeration Compressors
,”
PhD thesis
,
Luleå tekniska universitet
,
Luleå
.
12.
van Emden
,
E.
,
Venner
,
C. H.
, and
Morales-Espejel
,
G. E.
,
2016
, “
Aspects of Flow and Cavitation Around an EHL Contact
,”
Tribol. Int.
,
95
, pp.
435
448
.
13.
Braun
,
M. J.
, and
Hannon
,
W. M.
,
2010
, “
Cavitation Formation and Modelling for Fluid Film Bearings: A Review
,”
Proc. Inst. Mech. Eng. Part J
,
224
(
9
), pp.
839
863
.
14.
Bayada
,
G.
, and
Chupin
,
L.
,
2013
, “
Compressible Fluid Model for Hydrodynamic Lubrication Cavitation
,”
ASME J. Tribol.
,
135
(
4
), p.
041702
.
15.
Swift
,
H. W.
,
1932
, “
The Stability of Lubricating Films in Journal Bearings
,”
Proc. Inst. Civil Engineers (London.)
,
233
, pp.
267
288
.
16.
Stieber
,
W.
,
1933
,
Das Schwimmlager: Hydrodynamische Theorie Des Gleitlagers
,
V.D.I. Verlag GMBH
,
Berlin
.
17.
Jakobsson
,
B.
,
Floberg
,
L.
, and
Floberg
,
L.
,
1957
,
The Finite Journal Bearing, Considering Vaporization
,
Transaction of Chalmers University of Technology
,
Gothenburg
, pp.
1
117
.
18.
Olsson
,
K.-O.
,
1965
,
Cavitation in Dynamically Loaded Bearings
, Vol. 308,
Transactions of Chalmers University of Technology
,
Gothenburg
.
19.
Elrod
,
H. G.
, and
Adams
,
M. L.
,
1975
,
Cavitation and Related Phenomena in Lubrication
,
Mechanical Engineering Publications for the Institute of Tribology
,
Leeds, UK
, pp.
37
42
.
20.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
, Jr.
,
1990
, “
An Efficient, Robust, and Time Accurate Numerical Scheme Applied to a Cavitation Algorithm
,”
J. Tribol.
,
112
(
1
), pp.
44
51
.
21.
Brewe
,
D.
,
1986
, “
Theoretical Modeling of the Vapor Cavitation in Dynamically Loaded Journal Bearings
,”
ASME J. Tribol.
,
108
(
4
), pp.
628
638
.
22.
Sahlin
,
F.
,
Almqvist
,
A.
,
Larsson
,
R.
, and
Glavatskih
,
S.
,
2007
, “
A Cavitation Algorithm for Arbitrary Lubricant Compressibility
,”
Tribol. Int.
,
40
(
8
), pp.
1294
1300
.
23.
Kumar
,
A.
, and
Booker
,
J. F.
,
1991
, “
A Finite Element Cavitation Algorithm
,”
ASME J. Tribol.
,
113
(
2
), pp.
276
284
.
24.
Boedo
,
S.
,
Booker
,
J. F.
, and
Wilkie
,
M. J.
,
1995
, “A Mass Conserving Modal Analysis for Elastohydrodynamic Lubrication,”
Tribology Series
,
D.
Dowson
,
C. M.
Taylor
,
T. H. C.
Childs
, and
G.
Dalmaz
, eds.,
Elsevier
,
New York
, pp.
513
523
.
25.
Bonneau
,
D.
,
Guines
,
D.
,
Frene
,
J.
, and
Toplosky
,
J.
,
1995
, “
EHD Analysis, Including Structural Inertia Effects and a Mass-Conserving Cavitation Model
,”
ASME J. Tribol.
,
117
(
3
), pp.
540
547
.
26.
Murty
,
K. G.
,
1974
, “
Note on a Bard-Type Scheme for Solving the Complementarity Problem
,”
Opsearch
,
11
(
2–3
), pp.
123
130
.
27.
Grando
,
F. P.
,
Priest
,
M.
, and
Prata
,
A. T.
,
2005
, “Lubrication in Refrigeration Systems: Performance of Journal Bearings Lubricated With Oil and Refrigerant Mixtures,”
Tribology and Interface Engineering Series
,
D.
Dowson
,
M.
Priest
,
G.
Dalmaz
, and
A. A.
Lubrecht
, eds.,
Elsevier
,
New York
, pp.
481
491
.
28.
van Odyck
,
D. E. A.
, and
Venner
,
C. H.
,
2003
, “
Compressible Stokes Flow in Thin Films
,”
ASME J. Tribol.
,
125
(
3
), pp.
543
551
.
29.
Xing
,
C.
,
Braun
,
M. J.
, and
Li
,
H.
,
2009
, “
A Three-Dimensional Navier–Stokes-Based Numerical Model for Squeeze-Film Dampers. Part 1—Effects of Gaseous Cavitation on Pressure Distribution and Damping Coefficients Without Consideration of Inertia
,”
Tribol. Trans.
,
52
(
5
), pp.
680
694
.
30.
Li
,
X.
,
Song
,
Y.
,
Hao
,
Z.
, and
Gu
,
C.
,
2012
, “
Cavitation Mechanism of Oil-Film Bearing and Development of a New Gaseous Cavitation Model Based on Air Solubility
,”
ASME J. Tribol.
,
134
(
3
), p.
031701
.
31.
Grando
,
F. P.
,
Priest
,
M.
, and
Prata
,
A. T.
,
2006
, “
A Two-Phase Flow Approach to Cavitation Modelling in Journal Bearings
,”
Tribol. Lett.
,
21
(
3
), pp.
233
244
.
32.
Grando
,
F. P.
,
Priest
,
M.
, and
Prata
,
A. T.
,
2006
, “
Lubrication in Refrigeration Systems: Numerical Model for Piston Dynamics Considering Oil-Refrigerant Interaction
,”
Proc. Inst. Mech. Eng. Part J
,
220
(
3
), pp.
245
258
.
33.
Gasche
,
J. L.
,
Andreotti
,
T.
, and
Maia
,
C. R. M.
,
2012
, “
A Model to Predict R134a Refrigerant Leakage Through the Radial Clearance of Rolling Piston Compressors
,”
Int. J. Refrig.
,
35
(
8
), pp.
2223
2232
.
34.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales
,
G.
,
2008
, “
A Full-System Approach of the Elastohydrodynamic Line/Point Contact Problem
,”
ASME J. Tribol.
,
130
(
2
), pp.
1
10
.
35.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Bair
,
S.
,
Vergne
,
P.
, and
Morales-Espejel
,
G.
,
2008
, “
Thermal Elastohydrodynamic Lubrication of Point Contacts Using a Newtonian/Generalized Newtonian Lubricant
,”
Tribol. Lett.
,
30
(
1
), pp.
41
52
.
36.
Martz
,
W. L.
,
Burton
,
C. M.
, and
Jacobi
,
A. M.
,
1996
, “
Local Composition Modelling of the Thermodynamic Properties of Refrigerant and Oil Mixtures
,”
Int. J. Refrig.
,
19
(
1
), pp.
25
33
.
37.
Castro
,
H. O. S.
,
Gasche
,
J. L.
, and
Prata
,
A. T.
,
2009
, “
Pressure Drop Correlation for Oil-Refrigerant R134a Mixture Flashing Flow in a Small Diameter Tube
,”
Int. J. Refrig.
,
32
(
3
), pp.
421
429
.
38.
Lacerda
,
V. T.
,
Prata
,
A.
, and
Fagotti
,
F.
,
2000
, “
Experimental Characterization of Oil-Refrigerant Two-Phase Flow
,”
ASME Adv. Energy Syst. Div.
,
40
, pp.
101
109
.
39.
Tao
,
L.
,
Diaz
,
S.
,
Andrés
,
L. S.
, and
Rajagopal
,
K. R.
,
2000
, “
Analysis of Squeeze Film Dampers Operating With Bubbly Lubricants
,”
J. Tribol.
,
122
(
1
), pp.
205
210
.
40.
Llewellin
,
E. W.
,
Mader
,
H. M.
, and
Wilson
,
S. D. R.
,
2002
, “
The Rheology of a Bubbly Liquid
,”
Proc. R. Soc. Lond. A
,
458
(
2020
), pp.
987
1016
.
41.
Murai
,
Y.
, and
Oiwa
,
H.
,
2008
, “
Increase of Effective Viscosity in Bubbly Liquids From Transient Bubble Deformation
,”
Fluid Dyn. Res.
,
40
(
7–8
), pp.
565
575
.
42.
Wong
,
T. N.
, and
Ooi
,
K. T.
,
1995
, “
Refrigerant Flow in Capillary Tube: An Assessment of the Two-Phase Viscosity Correlations on Model Prediction
,”
Int. Commun. Heat Mass Transfer
,
22
(
4
), pp.
595
604
.
43.
Owens
,
W. L.
,
1961
, “
Two-Phase Pressure Gradient
,”
ASME Int. Develop. Heat Transf.
, Part II, pp.
363
368
.
44.
Cicchitti
,
A.
,
Lombardi
,
C.
,
Silvestri
,
M.
,
Soldaini
,
G.
, and
Zavattarelli
,
R.
,
1959
,
Two-Phase Cooling Experiments: Pressure Drop, Heat Transfer and Burnout Measurements
,
Centro Informazioni Studi Esperienze
,
Milan
.
45.
Dukler
,
A. E.
,
Wicks
,
M.
, and
Cleveland
,
R. G.
,
1964
, “
Frictional Pressure Drop in Two-Phase Flow: A. A Comparison of Existing Correlations for Pressure Loss and Holdup
,”
AIChE J.
,
10
(
1
), pp.
38
43
.
46.
McAdams
,
W. H.
,
1942
, “
Vaporization Inside Horizontal Tubes-II, Benzene Oil Mixtures
,”
Trans. ASME
,
64
, pp.
193
200
.
47.
Beattie
,
D. R.
, and
Whalley
,
P. B.
,
1982
, “
Simple Two-Phase Frictional Pressure Drop Calculation Method
,”
Int. J. Multiphase Flow
,
8
(
1
), pp.
83
87
.
48.
Lin
,
S.
,
Kwok
,
C. C. K.
,
Li
,
R.-Y.
,
Chen
,
Z.-H.
, and
Chen
,
Z.-Y.
,
1991
, “
Local Frictional Pressure Drop During Vaporization of R-12 Through Capillary Tubes
,”
Int. J. Multiphase Flow
,
17
(
1
), pp.
95
102
.
49.
Dias
,
J. P.
,
Gasche
,
J. L.
, and
Seixlack
,
A. L.
,
2011
, “
Mathematical Modeling of the Ester Oil-Refrigerant R134a Mixture Two-Phase Flow With Foam Formation Through a Small Diameter Tube
,”
J. Braz. Soc. Mech. Sci. Eng.
,
33
(
3
), pp.
314
323
.
50.
Asnaghi
,
A.
,
Feymark
,
A.
, and
Bensow
,
R. E.
,
2017
, “
Improvement of Cavitation Mass Transfer Modeling Based on Local Flow Properties
,”
Int. J. Multiphase Flow
,
93
, pp.
142
157
.
51.
Joseph
,
D. D.
,
1998
, “
Cavitation and the State of Stress in a Flowing Liquid
,”
J. Fluid Mech.
,
366
, pp.
367
378
.
52.
Yang
,
Y.
,
Li
,
W.
,
Shi
,
W.
,
Zhang
,
W.
, and
El-Emam
,
M. A.
,
2019
, “
Numerical Investigation of a High-Pressure Submerged Jet Using a Cavitation Model Considering Effects of Shear Stress
,”
Processes
,
7
(
8
), p.
541
.
53.
Yang
,
P.
, and
Wen
,
S.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
(
4
), pp.
631
636
.
54.
Panton
,
R. L.
,
1996
,
Incompressible Flow
, 2nd ed.,
John Wiley & Sons Inc
,
Hoboken, NJ
.
55.
Habchi
,
W.
,
2017
, “
Coupling Strategies for Finite Element Modeling of Thermal Elastohydrodynamic Lubrication Problems
,”
ASME J. Tribol.
,
139
(
4
), p.
041501
.
56.
Laesecke
,
A.
, and
Bair
,
S.
,
2011
, “
High-Pressure Viscosity Measurements of 1,1,1,2-Tetrafluoroethane
,”
Int. J. Thermophys.
,
32
(
5
), pp.
925
941
.
57.
Raisin
,
J.
,
Fillot
,
N.
,
Vergne
,
P.
, and
Dureisseix
,
D.
,
2019
, “
Numerical Simulation of Lubricated DLC-Coated Point Contacts Under Infinite Sliding Conditions
,”
Tribol. Int.
,
133
, pp.
136
151
.
58.
Habchi
,
W.
, and
Bair
,
S.
,
2020
, “
The Role of the Thermal Conductivity of Steel in Quantitative Elastohydrodynamic Friction
,”
Tribol. Int.
,
142
, p.
105970
.
59.
Etsion
,
I.
,
1982
, “
Observation of Pressure Variation in the Cavitation Region of Submerged Journal Bearings
,”
ASME J. Lubr. Technol.
,
104
(
2
), pp.
157
163
.
60.
Braun
,
M.
, and
Hendricks
,
R.
,
1984
, “
An Experimental Investigation of the Vaporous/Gaseous Cavity Characteristics of an Eccentric Journal Bearing
,”
ASLE Trans.
,
27
(
1
), pp.
1
14
.
61.
Dias
,
J. P.
,
Barbosa
,
J. R.
, Jr.
, and
Prata
,
A. T.
,
2012
, “
Dynamics of Gas Bubble Growth in Oil-Refrigerant Mixtures Under Isothermal Depressurization
,”
J. Braz. Soc. Mech. Sci. Eng.
,
34
(
2
), pp.
155
166
.
62.
Castro
,
H. O. S.
,
Gasche
,
J. L.
,
Conti
,
W. P.
, and
Vieira
,
E. D. R.
,
2008
, “
Flow Patterns of the Ester Oil-Refrigerant R134a Mixture Flashing Flow Through a Small Diameter Tube
,”
RETERM
,
7
(
1
), p.
41
.
63.
Grubin
,
A. N.
,
1949
, “
Fundamentals of the Hydrodynamic Theory of Lubrication of Heavily Loaded Cylindrical Surfaces
,” Investigation of the Contact of Machine Components, Central Scientific Research Institute for Technology and Mechanical Engineering (Moscow), Book 30, (DSIR Translation 337) (Ed. Ketova, Kh. F.), pp.
115
166
.
64.
Andrade
,
E. d. C.
,
1930
, “
The Viscosity of Liquids
,”
Nature
,
125
(
3148
), pp.
309
310
.
65.
McEwen
,
E.
,
1952
, “
The Effect of Variation of Viscosity With Pressure on the Load-Carrying Capacity of the Oil Film Between Gear-Teeth
,”
J. Inst. Pet.
,
38
(
344–345
), pp.
646
672
.
66.
Conde
,
M. R.
,
1996
, “
Estimation of Thermophysical Properties of Lubricating Oils and Their Solutions With Refrigerants: An Appraisal of Existing Methods
,”
Appl. Therm. Eng.
,
16
(
1
), pp.
51
61
.
67.
Mermond
,
Y.
,
Marvillet
,
C.
, and
Feidt
,
M.
,
1999
, “
Thermodynamic and Physical Properties of Mixtures of Refrigerants and Oils; Proprietes Thermodynamiques Et Physiques Des Melanges de Fluides Frigorigenes Et d’huiles
,”
Int. J. Refrig.
,
22
(
7
), pp.
569
579
.
68.
Totten
,
G.
,
Shah
,
R.
, and
Forester
,
D.
,
2019
,
Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing
, 2nd ed.,
ASTM International
,
West Conshohocken, PA
.
69.
Zhang
,
Y.
, and
He
,
M.
,
2010
, “
Kinematic Viscosity of R410a and R407c Refrigerant-Oil Mixtures in the Saturated Liquid Phase With Lubricant Mass Fraction in the Range of (0 to 0.0001)
,”
J. Chem. Eng. Data
,
55
(
8
), pp.
2886
2889
.
70.
Laesecke
,
A.
,
Perkins
,
R. A.
, and
Nieto de Castro
,
C. A.
,
1992
, “
Thermal Conductivity of R134a
,”
Fluid Phase Equilib.
,
80
, pp.
263
274
.
You do not currently have access to this content.