Abstract

Condition monitoring of rotor dynamic is recognized as an advanced preventative maintenance technique for fault-free operation. Faulty bearings in rotating machines may cause severe problems and even untimely breakdowns. This work demonstrates the power of the finite element analysis (FEA) model and dimension analysis technique (DAT) to analyze the effect of the depth and slope angle of surface faults on the bearing contact characteristic. Experimentation is performed to investigate the vibration characteristics of ball bearings. The FEA, DAT, and experimentation show that vibration amplitude is a vital function of surface fault size. The current approach of FEA with DAT reflects their reliability and accuracy for the diagnosis of rotor systems. The present method was found effective in predicting vibration amplitude and defect frequency within acceptable error.

References

1.
Trevor
,
S.
, and
Farshid
,
S.
,
2010
, “
Explicit Finite Element Modeling of Subsurface Initiated Spalling in Rolling Contacts
,”
Tribol. Int.
,
43
(
1
), pp.
1693
1702
.
2.
Wang
,
Y.
,
Peter
,
W. T.
,
Tang
,
B.
,
Qin
,
Y.
,
Deng
,
L.
,
Huang
,
T.
, and
Xu
,
G.
,
2019
, “
Order Spectrogram Visualization for Rolling Bearing Fault Detection Under Speed Variation Conditions
,”
Mech. Syst. Signal Process.
,
122
(
1
), pp.
580
596
.
3.
Neisi
,
N.
,
Sikanen
,
E.
,
Heikkinen
,
J. E.
, and
Sopanen
,
J.
,
2017
, “
Stress Analysis of a Touchdown Bearing Having an Artificial Crack
,”
Proceedings ASME International Design Engineering Technical Conference and Computers and Information in Engineering
,
Cleveland, OH
,
Aug. 6–9
, Vol. 14, No. 3, pp.
124
129
.
4.
Mishra
,
C.
,
Samantaray
,
A. K.
, and
Chakraborty
,
G.
,
2017
, “
Ball Bearing Defect Models: A Study of Simulated and Experimental Fault Signatures
,”
J. Sound Vib.
,
400
(
1
), pp.
86
112
.
5.
Shi
,
Z.
,
Liu
,
J.
, and
Dong
,
S.
,
2020
, “
A Numerical Study of the Contact and Vibration Characteristic of a Roller Bearing With a Surface Crack
,”
Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl.
,
234
(
4
), pp.
549
563
.
6.
Bonneau
,
D.
, and
Absi
,
J.
,
1994
, “
Analysis of Aerodynamic Journal Bearings With Small Number of Herringbone Grooves by Finite Element Method
,”
ASME J. Tribol.
,
116
(
3
), pp.
698
704
.
7.
Bonneau
,
D.
,
Huitric
,
J.
, and
Tournerie
,
B.
,
1993
, “
Finite Element Analysis of Grooved Gas Thrust Bearings and Grooved Gas Face Seals
,”
ASME J. Tribol.
,
115
(
2
), pp.
348
354
.
8.
Iseli
,
E.
,
Guenat
,
E.
,
Tresch
,
R.
, and
Schiffmann
,
J.
,
2019
, “
Analysis of Spiral-Grooved Gas Journal Bearings by the Narrow Groove Theory and the Finite Element Method at Large Eccentricities
,”
ASME J. Tribol.
,
142
(
4
), p.
041802
.
9.
Li
,
B.
, and
Zhang
,
Y.
,
2011
, “
Supervised Locally Linear Embedding Projection for Machinery Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
3125
3134
.
10.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1984
, “
Model for Vibration Produced by a Single Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
,
96
(
1
), pp.
69
82
.
11.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1985
, “
Vibration Produced by Multiple Point Defects in a Rolling Element Bearing
,”
J. Sound Vib.
,
98
(
2
), pp.
263
273
.
12.
Patil
,
M. S.
,
Mathew
,
J.
,
Rajendrakumar
,
P. K.
, and
Desai
,
S.
,
2010
, “
A Theoretical Model to Predict the Effect of Localized Defect on Vibrations Associated With Ball Bearing
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1193
1201
.
13.
Dick
,
P.
,
Carl
,
H.
,
Nader
,
S.
,
Alireza
,
M. A.
, and
Sarabjeet
,
S.
,
2015
, “
Analysis of Bearing Stiffness Variations Contact Forces and Vibrations in Radially Loaded Double Row Rolling Element Bearing With Raceway Defect
,”
Mech. Syst. Signal Process.
,
50–51
(
1
), pp.
139
160
.
14.
Igarashi
,
T.
, and
Kato
,
J.
,
1985
, “
Studies on the Vibration and Sound of Defective Rolling Bearings. Third Report: Vibration of Ball Bearing With Multiple Defects
,”
Bull. JSME
,
28
(
237
), pp.
492
499
.
15.
Sopanen
,
J.
, and
Mikkola
,
A.
,
2003
, “
Dynamic Model of a Deep-Groove Ball Bearings Including Localized and Distributed Defects. Part 1: Theory
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn.
,
217
(
3
), pp.
201
211
.
16.
Sopanen
,
J.
, and
Mikkola
,
A.
,
2003
, “
Dynamic Model of a Deep-Groove Ball Bearings Including Localized and Distributed Defects. Part 2: Implementation and Results
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn.
,
217
(
3
), pp.
213
223
.
17.
Tandon
,
N.
, and
Choudhury
,
A.
,
1997
, “
An Analytical Model for the Prediction of the Vibration Response of Rolling Element Bearings Due to Localized Defect
,”
J. Sound Vib.
,
205
(
3
), pp.
275
292
.
18.
Tandon
,
N.
, and
Choudhury
,
A.
,
1998
, “
A Theoretical Model to Predict Vibration Response of Rolling Bearings to Distributed Defects Under Radial Load
,”
ASME J. Vib. Acoust.
,
120
(
1
), pp.
214
220
.
19.
Choudhury
,
A.
, and
Tandon
,
N.
,
2006
, “
Vibration Response of Rolling Element Bearing in a Rotor Bearing System to a Local Defect Under Radial Load
,”
ASME J. Tribol.
,
128
(
2
), pp.
252
261
.
20.
Tomovic
,
R.
,
Miltenovic
,
V.
,
Banic
,
M.
, and
Miltenovic
,
A.
,
2010
, “
Vibration Response of Rigid Rotor in Unloaded Rolling Element Bearing
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1176
1185
.
21.
Desavale
,
R. G.
,
Venkatachalam
,
R.
, and
Chavan
,
S. P.
,
2013
, “
Antifriction Bearings Damage Analysis Using Experimental Data Based Models
,”
ASME J. Tribol.
,
135
(
4
), p.
041105
.
22.
Desavale
,
R. G.
,
Venkatachalam
,
R.
, and
Chavan
,
S. P.
,
2014
, “
Experimental and Numerical Studies on Spherical Roller Bearings Using Multivariable Regression Analysis
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021022
.
23.
Desavale
,
R. G.
,
Kanai
,
R. A.
,
Chavan
,
S. P.
,
Venkatachalam
,
R.
, and
Jadhav
,
P. M.
,
2015
, “
Vibration Characteristics Diagnosis of Roller Bearing Using the New Empirical Model
,”
ASME J. Tribol.
,
138
(
1
), p.
011103
.
24.
Desavale
,
R. G.
,
2019
, “
Dynamics Characteristic and Diagnosis of a Rotor-Bearing’s System Through a Dimensional Analysis Approach: An Experimental Study
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
1
), p.
014501
.
25.
Mufazzal
,
S.
,
Muzzakir
,
S. M.
, and
Khanam
,
S.
,
2021
, “
Theoretical and Experimental Analyses of Vibration Impulses and Their Influence on Accurate Diagnosis of Ball Bearing With Localized Outer Race Defect
,”
J. Sound Vib.
,
513
(
1
), p.
116407
.
26.
Patil
,
S. M.
,
Desavale
,
R. G.
,
Shinde
,
P. V.
, and
Patil
,
V. R.
,
2020
,
Lecture Notes in Mechanical Engineering Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering
,
N.
Gascoin
, and
E.
Balasubramanian
, eds.,
Springer
,
Singapore
, pp.
189
198
.
27.
Kanai
,
R. A.
,
Desavale
,
R. G.
, and
Chavan
,
S. P.
,
2016
, “
Experimental-Based Fault Diagnosis of Rolling Bearings Using Artificial Neural Network
,”
ASME J. Tribol.
,
138
(
3
), p.
031103
.
28.
Patel
,
V.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2010
, “
A Dynamic Model for Vibration Studies of Deep Groove Ball Bearings Considering Single and Multiple Defects in Races
,”
ASME J. Tribol.
,
132
(
4
), p.
041101
.
29.
Jing
,
L.
,
2020
, “
A Dynamic Modelling Method of a Rotor-Roller Bearing-Housing System With a Localized Fault Including the Additional Excitation Zone
,”
J. Sound Vib.
,
469
(
1
), p.
115144
.
30.
Linkai
,
N.
,
Hongrui
,
C.
,
Huipeng
,
H.
,
Bing
,
W.
,
Yuan
,
L.
, and
Xiaoyan
,
X.
,
2020
, “
Experimental Observations and Dynamic Modeling of Vibration Characteristics of a Cylindrical Roller Bearing With Roller Defects
,”
Mech. Syst. Signal Process.
,
138
(
1
), p.
1
19
.
31.
Rafsanjani
,
A.
,
Abbasion
,
S.
,
Farshidianfar
,
A.
, and
Moeenfard
,
H.
,
2009
, “
Nonlinear Dynamic Modeling of Surface Defects in Rolling Element Bearing Systems
,”
J. Sound Vib.
,
319
(
3–5
), pp.
1150
1174
.
32.
Rui
,
Y.
,
Lei
,
H.
,
Yulin
,
J.
,
Yushu
,
C.
, and
Zhiyong
,
Z.
,
2018
, “
The Varying Compliance Resonance in a Ball Bearing Rotor System Affected by Different Ball Numbers and Rotor Eccentricities
,”
ASME J. Tribol.
,
140
(
5
), p.
051101
.
33.
Kumbhar
,
S. G.
,
Sudhagar
,
E. P.
, and
Desavale
,
R. G.
,
2020
, “
Theoretical and Experimental Studies to Predict Vibration Responses of Defects in Spherical Roller Bearings Using Dimension Theory
,”
Measurement
,
161
(
1
), p.
107846
.
34.
Kumbhar
,
S. G.
, and
Sudhagar
,
P. E.
,
2020
, “
Fault Diagnostics of Roller Bearings Using Dimension Theory
,”
ASME J. Nondestr. Eval.
,
4
(
1
), p.
011001
.
35.
Kumbhar
,
S. G.
, and
Sudhagar
,
E. P.
,
2020
, “
An Integrated Approach of Adaptive Neuro-Fuzzy Inference System and Dimension Theory for Diagnosis of Rolling Element Bearing
,”
Measurement
,
166
(
1
), p.
108266
.
36.
Jadhav
,
P. M.
,
Kumbhar
,
S. G.
,
Desavale
,
R. G.
, and
Patil
,
S. B.
,
2020
, “
Distributed Fault Diagnosis of Rotor-Bearing System Using Dimensional Analysis and Experimental Methods
,”
Measurement.
,
166
(
1
), pp.
108239-1
108239-12
.
37.
Kumbhar
,
S. G.
, and
Sudhagar
,
P. E.
,
2020
, “
Model Development to Predict Vibration Response of Roller Bearings Considering the Material and Thermal Parameters Using Dimension Theory
,”
AIP Conf. Proc.
,
2270
(
1
), p.
040003
.
38.
Kumbhar
,
S. G.
,
Sudhagar
,
P. E.
, and
Desavale
,
R. G.
,
2020
, “
An Overview of Dynamic Modeling of Rolling-Element Bearings
,”
Noise Vib. Worldw.
,
52
(
1–2
), pp.
3
18
.
39.
Patil
,
S. M.
,
Desavale
,
R. G.
, and
Kumbhar
,
S. G.
,
2021
, “
Roller Element Bearing Fault Size Estimation Using Adaptive Neurofuzzy Inference System
,”
ASCE-ASME J. Risk Uncertain Eng. Syst. B: Mech. Eng.
,
7
(
1
), p.
011001
.
40.
Kumbhar
,
S. G.
,
Desavale
,
R. G.
, and
Dharwadkar
,
N. V.
,
2021
, “
Fault Size Diagnosis of Rolling Element Bearing Using Artificial Neural Network and Dimension Theory
,”
Neural Comput. Appl.
,
33
(
23
), pp.
16079
16093
.
41.
Salunkhe
,
V. G.
,
Desavale
,
R. G.
, and
Jagadeesha
,
T.
,
2021
, “
Experimental Frequency-Domain Vibration Based Fault Diagnosis of Roller Element Bearings Using Support Vector Machine
,”
ASCE-ASME J. Risk Uncertain Eng. Syst. B: Mech. Eng.
,
7
(
2
), p.
021001
.
42.
Salunkhe
,
V. G.
, and
Desavale
,
R. G.
,
2021
, “
An Intelligent Prediction for Detecting Bearing Vibration Characteristics Using a Machine Learning Model
,”
ASME J. Nondestr. Eval.
,
4
(
3
), p.
031004
.
43.
Nikhil
,
D. L.
,
Nagaraj
,
K. A.
, and
Ghatu
,
S.
,
2019
, “
Effect of Plasticity on the Dynamic Capacity of Modern Bearing Steels
,”
Tribol. Int.
,
133
(
1
), pp.
160
171
.
You do not currently have access to this content.